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Abstract We present efficient localization aware

sampling and connection strategies for incremental

sampling-based stochastic motion planners. For sam-

pling, we introduce a new measure of localization ability

of a sample, one that is independent of the path taken

to reach the sample and depends only on the sensor

measurement at the sample. Using this measure, our

sampling strategy puts more samples in regions where

sensor data is able to achieve higher uncertainty re-

duction while maintaining adequate samples in regions

where uncertainty reduction is poor. This leads to a less

dense roadmap and hence results in significant time sav-

ings. We also show that a stochastic planner that uses

our sampling strategy is probabilistically complete un-

der some reasonable conditions on parameters. We then

present a localization aware efficient connection strat-
egy that uses an uncertainty aware approach in connect-

ing the new sample to the neighbouring nodes, i.e., it

uses an uncertainty measure (as opposed to distance)

to connect the new sample to a neighboring node so

that the new sample is reachable with least uncertainty

(“the closest”), and furthermore, connections to other

neighbouring nodes are made only if the new path to

them (via the new sample) helps to reduce the uncer-

tainty at those nodes. This is in contrast to current in-

cremental stochastic motion planners that simply con-

nect the new sample to all of the neighbouring nodes

and therefore, take more search queue iterations to up-

date the paths (i.e., uncertainty propagation). Hence,
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our efficient connection strategy, in addition to elimi-

nating the inefficient edges that do not contribute to

better localization, also reduces the number of search

queue iterations. We provide simulation results that

show that a) our localization aware sampling strategy

places less samples and find a well-localized path in

shorter time with little compromise on the quality of

path as compared to existing sampling techniques, b)

our localization aware connection strategy finds a well-

localized path in shorter time with no compromise on

the quality of path as compared to existing connection

techniques, and finally c) combined use of our sampling

and connection strategies further reduces the planner

run time.

Keywords Sampling strategy · Connection strategy ·
Planning under uncertainty · Incremental · Localization

1 Introduction

Safe execution of motion plans is of critical impor-

tance for many robotic tasks. As a result of uncer-

tainty associated with a robot’s motion and its sensory

readings, the true robot state is not available. There-

fore, a planning method must account for these un-

certainties for safe and collision-free execution of mo-

tion plans. Partially observable Markov decision process

(POMDP) (Kaelbling et al, 1998) is a general frame-

work to deal with motion and sensing uncertainty, how-

ever due to its significant complexity, solving realistic

problems with large state spaces remains a challenge,

even though progress has been made on the efficiency

issues of these approaches (Bai et al, 2014, 2015; Kur-

niawati et al, 2009, 2012; Pineau et al, 2003). A class of

methods that carries robot state and associated uncer-

tainty is an approximation to POMDP. Among them, a
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sub-class (Bouilly et al, 1995; Fraichard and Mermond,

1998; Lazanas and Latombe, 1995) assumes the pres-

ence of landmark regions in the environment where ac-

cumulated motion uncertainty can be “reset”. Another

sub-class (Agha-mohammadi et al, 2014; van den Berg

et al, 2011; Bry and Roy, 2011; Huang and Gupta,

2008; Lambert and Gruyer, 2003; Melchior and Sim-

mons, 2007; Prentice and Roy, 2009) uses sampling-

based methods (graph-based and tree-based) where un-

certainty is propagated from start to goal. We call this

type as sampling-based stochastic motion planners.

The sampling-based stochastic motion planners can

be implemented either in an incremental (graph-based

(Bry and Roy, 2011) or tree-based (van den Berg

et al, 2011; Huang and Gupta, 2008; Melchior and Sim-

mons, 2007)) or in a non-incremental way (graph-based

(Agha-mohammadi et al, 2014; van den Berg et al,

2011; Lambert and Gruyer, 2003; Prentice and Roy,

2009)). These planners are computationally demand-

ing as compared to their counterparts that do not con-

sider uncertainty (deterministic motion planners). This

is because the paths no longer have the “optimal sub-

structure” property, i.e., the incurred costs on differ-

ent edges depend on each other. Note that the direct

transformation of deterministic sampling-based meth-

ods to incorporate uncertainty breaks this property,

because the underlying space is still the configuration

space and the uncertainty is propagated from one con-

figuration to another (Agha-mohammadi et al, 2014;

van den Berg et al, 2011). To compute the cost of an

edge emanating from a node, the full knowledge of be-

lief (robot pose and associated uncertainty) at the node

is required, this in turn requires full knowledge of the

history of observations and actions leading up to the

node. (Agha-mohammadi et al, 2014) is an exception

in the sense that the incurred costs on different edges

do not depend on each other. This comes at the cost

of some simplifying assumptions including holonomic

robot and Gaussian belief for robot states with trivial

dynamics. The computational cost further increases if

an edge cost in these planners uses collision probabil-

ity (Agha-mohammadi et al, 2014; van den Berg et al,

2011; Huang and Gupta, 2008), computation of which

depends on the beliefs along that edge. Furthermore,

this cost will go up drastically if collision checks are

carried out in 3D (for example, for mobile manipula-

tors). Since the time consuming step in stochastic mo-

tion planners arises from the uncertainty propagation

along the edges, incremental stochastic planners can be

computationally more demanding as compared to non-

incremental ones where search mechanism is carried out

only once while in former, search mechanism is repeated

every time a new sample is added to the roadmap. For

real time applications, for instance to facilitate anytime

planning (Karaman et al, 2011), it is important to re-

duce this run time. At least part of this run time re-

duction can be achieved by “smart” sampling and con-

nection strategies. Current stochastic motion planners

(Agha-mohammadi et al, 2014; van den Berg et al, 2011;

Bry and Roy, 2011; Huang and Gupta, 2008; Lambert

and Gruyer, 2003; Melchior and Simmons, 2007; Pren-

tice and Roy, 2009) use traditional sampling and con-

nection strategies which are designed for deterministic

motion planners and address the issue of uncertainty

at path search phase. These strategies add unnecessary

nodes and edges that do not contribute to better local-

ization. This leads to a dense roadmap which in turn

increases the computational cost. We propose localiza-

tion aware sampling and connection strategies to bring

down the computational cost so that the incremental

stochastic motion planners can be used for closer to

real time applications.

The localization aware sampling strategy avoids

putting large number of samples by considering the “lo-

calization ability” of a new sample relative to its neigh-

bouring nodes in the roadmap. It puts more samples

in regions where sensor data is able to achieve higher

uncertainty reduction while maintaining an adequate

number of samples in regions where uncertainty reduc-

tion is poor. This leads to a less dense roadmap that

results in significant time savings in the path search

phase. Note that localization of a robot at a point de-

pends on 1) the path taken to reach the point and 2)

on the update based on sensor model. However, at the

sampling stage the path taken to a node is not available.

We develop a new measure of “localization ability of a

sample” that “extracts” how well a sensor observation

at a sample point reduces uncertainty without explic-

itly knowing the path leading to it and use this measure

to design a localization aware sampling strategy.

A key reason we use reduction in uncertainty as a

measure is that higher uncertainty is more detrimen-

tal and hence has higher cost for many tasks. Never-

theless, one possible consequence of our sampling tech-

nique is that path quality (we use true localization un-

certainty along the path as a quality metric) may suffer,

if the path passes through regions where uncertainty re-

duction is poor. Via simulation results, we show that,

at least empirically, there is little compromise in path

quality. Furthermore, note that since at the sampling

stage, true localization uncertainty is not available, a

cost function metric using it can not be computed,

hence can not be used. The best one can do is to use the

uncertainty reduction ability of the sensor at the sample

point, as we do. Note that in the search phase (where
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Fig. 1 It shows the class of planners for which our sampling
and connection strategies can be used. For example, while go-
ing down the line from incremental planners to graph-based
- our both approaches are applicable. Similarly, from incre-
mental planners to tree-based - our sampling strategy and
extension of connection strategy to tree-based planners are
applicable. It also shows the type of planners for which we
provide simulation results.

edges are added and uncertainty is propagate along the

path), appropriate cost function is still minimized.

The localization aware connection strategy first con-

nects the new sample to a nearest node (chosen based

on an uncertainty metric and not on distance metric)

and then to other neighbouring nodes. Connection from

new sample to a neighbouring node is made only if

the new path to that node reduces the uncertainty.

Our efficient connection strategy eliminates the inef-

ficient edges that would be created in current connec-

tion schemes (see Sec 2.2) but do not contribute to-

ward better localization. As a result, it also reduces the

number of search queue iterations needed to update the

paths. This helps to find a well-localized path in shorter

time with no compromise on the quality of path. Note

that our strategy applies to graph-based incremental

stochastic planners that maintain a single belief at a

node and is not applicable to planners with multiple be-

liefs. Multiple beliefs at a node are needed for planners

that optimize multiple objective functions since multi-

ple paths to a node can not be completely ordered (as

is the case for a single objective function, which can

be a weighted sum of multiple costs) and need to be

kept so as not to prematurely prune an optimal one,

although domination criteria can be used to do some

pruning (see (Bry and Roy, 2011; Huang and Gupta,

2009), the later is more specific to manipulator plan-

ning for fixed base). Of course, tree-based methods, by

definition, have single belief since they have a unique

path to any given node.

We provide simulation results by comparing incre-

mental stochastic planners (we used RRBT (Bry and

Roy, 2011)) with our sampling and connection strate-

gies that show that a) our localization aware sampling

strategy places less samples and finds a well-localized

path in shorter time with little compromise on the qual-

ity of path as compared to existing sampling techniques,

b) our localization aware connection strategy finds a

well-localized path in shorter time with no compromise

on the quality of path as compared to existing con-

nection techniques, and finally c) combined use of our

sampling and connection strategies further reduces the

planner run time. Separately, we show that our local-

ization aware sampling strategy is also helpful for non-

incremental stochastic planners. Fig 1 clearly shows the

class of planners for which we provide simulation results

and where our contributions are applicable. The prob-

abilistic completeness issues with our approaches are

also discussed. We show that a stochastic planner that

uses our sampling strategy is probabilistically complete

under some reasonable conditions on parameters. Our

connection strategy is also trivially complete.

2 Related work

In this section we review the related work and place our

research work in context. First, we review the related

work on sampling strategies, and then the work con-

cerning connection strategies for sampling-based mo-

tion planning under uncertainty.

2.1 Sampling strategies

A large number of sampling schemes have been used

with the standard (without uncertainty) sampling

based planners (RRT or PRM) such as, sample around

and near the obstacles, or in narrow corridors, medial

axis sampling to sample far away from the obstacles,

use visibility to reduce the number of samples, adaptive

strategies such as restrict sampling to size-varying balls

around nodes, entropy guided approaches, etc. (Hsu

et al, 2006) and (Knepper and Mason, 2012) provide

a survey of recent work in non-uniform sampling for

PRMs. Above mentioned sampling approaches do not

consider the uncertainty associated with robot and its

sensors.

Missiuro and Roy (2006) proposed an approach

where the sampling strategy incorporates mapping un-

certainty (they do not consider localization uncertainty

that we consider in this paper) in which the decision

to accept or reject a sample is based on its collision

probability (computed using each of the possible world

model). However, the issue of “how good a sample
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would be in localizing the robot?”, which we explic-

itly consider does not arise in their problem context.

As mentioned earlier, computing the collision proba-

bility in the presence of localization uncertainty of a

sample right at the sampling stage, i.e., before con-

necting it to the roadmap is not possible. Note that

at sampling stage we consider only sensing uncertainty

while for path search (where uncertainty is propagated

from start) we consider both motion and sensing uncer-

tainty. To the best of our knowledge, we are not aware

of any other sampling approach that considers uncer-

tainty. All sampling-based stochastic motion planners

(Agha-mohammadi et al, 2014; van den Berg et al, 2011;

Bry and Roy, 2011; Huang and Gupta, 2008; Lam-

bert and Gruyer, 2003; Melchior and Simmons, 2007;

Prentice and Roy, 2009) use one of the sampling tech-

niques from deterministic motion planners and address

the motion, sensing, and mapping uncertainty at query

phase where a search algorithm searches the roadmap

by propagating uncertainty from start to goal.

Although not directly related to motion planning

(or sampling techniques), the notion of uncertainty has

been used in the past to select the best sample (the

next best goal of robot) for search and exploration. For

example: Stachniss et al (2005) first plans for each of

the possible goal candidates and selects the one (as next

best goal) which in addition to information maximiza-

tion (unknown region), also has good localization along

the path.

2.2 Connection Strategies

Connection strategies used in sampling-based determin-

istic motion planners simply connect the new sample to

the neighbouring nodes within in a fixed size ball or size

varying ball. A thorough discussion on these strategies

can be found in (Choset et al, 2005a; LaValle, 2006)

while for more recent updates we refer to (Hsu et al,

2006; Karaman and Frazzoli, 2011). These approaches

do not account for uncertainty associated with robot

and its sensors.

All (Agha-mohammadi et al, 2014; van den Berg

et al, 2011; Bry and Roy, 2011; Huang and Gupta,

2008; Lambert and Gruyer, 2003; Melchior and Sim-

mons, 2007; Prentice and Roy, 2009) of the sampling-

based stochastic motion planners that consider uncer-

tainty inherit the connection strategy from determinis-

tic motion planners. Among incremental planners, Bry

and Roy (2011) is obliged to use traditional connec-

tion strategy as they optimized multiple objective func-

tions, hence are required to maintain multiple paths to

(hence multiple beliefs at) a node in order to guarantee

not to prune an optimal path, although some pruning

can be done via domination criteria. To the best of our

knowledge, the work of Bry and Roy (2011) is the only

roadmap (graph) based stochastic motion planner that

works in an incremental fashion. Although it is designed

for a set of beliefs, the same strategy also works for the

case of single belief at a node. We call their algorithm

(RRBT) with single belief as RRBT type framework

(RRBT-TF). It minimizes the uncertainty at goal while

respecting the chance-constraints (threshold on uncer-

tainty) along the path. Planners in (Agha-mohammadi

et al, 2014; van den Berg et al, 2011; Huang and Gupta,

2008; Lambert and Gruyer, 2003; Melchior and Sim-

mons, 2007; Prentice and Roy, 2009) also use single be-

lief at a node but they do not incrementally construct

the roadmap.

The problem with the use of traditional connection

strategy for incremental stochastic planners is that it

even considers those edges which do not contribute to-

ward better localization. With the inclusion of such

edges, the planning time increases, however, the same

quality of path can be find in lesser time if we elim-

inate these edges. This is exactly what our localiza-

tion aware connection strategy does. It eliminates those

edges which do not contribute toward better localiza-

tion.

Similar to graph-based incremental stochastic plan-

ners, current tree-based stochastic motion planners

(van den Berg et al, 2011; Huang and Gupta, 2008; Mel-

chior and Simmons, 2007) also inherit the connection

strategy from tree-based deterministic motion planners.

There the EXTEND step simply connects the sample to

nearest node (distance based) and then propagate the

uncertainty to it. However, this does not provide the

least uncertain path to the sample. Instead, our connec-

tion strategy will connect the sample to a neighbouring

node (within a ball) the uncertainty propagation from

which gives minimal uncertainty at the sample. Fur-

thermore, we use the additional “rewiring” notion of

RRT* (Karaman and Frazzoli, 2011), albeit with un-

certainty metric, to rewire the connections to the neigh-

bouring nodes. We extend RRT* to handle the uncer-

tainty associated with a robot’s motion and its sensors.

3 Contribution and problem statement

In this paper, we suggest more efficient localization

aware sampling and connection strategies that are ap-

plicable to classes of planners as stated in Fig 1. We

use an existing planner, RRBT basically as a tool (i.e.,

as a base planner) to demonstrate the efficiency gained

by our strategies for incremental stochastic planners.

We present three planners: i) RRBT-LAS, that demon-

strates efficiency gained solely due to our sampling
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strategy, ii) RRBT-LAC, that demonstrates efficiency

gained solely due to our connection strategy, and iii)

RRBT-LASC, that demonstrates the efficiency gained

due to combined effect of our sampling and connec-

tion strategies. The objective of these planners is to

minimize the cost function while respecting the chance-

constraints (threshold on uncertainty),

min
x0:T

{
T∑
t=1

J(xt)

}
subject to

P (xt ∈ χobs) < δ, ∀t ∈ [0, T ]

where xt is robot state, χobs represents the states where

robot is in collision with obstacles, δ is a user defined

threshold that defines the chance-constraint and J :

x → <+ is the cost function. The cost function we use

for simulation results is the trace of covariance matrix.

4 Localization ability of a sample

In this section, we describe how to compute the localiza-

tion ability of a sample. For this, we first briefly explain

the extended Kalman filter (EKF) (Prentice and Roy,

2009) and then develop an expression for the localiza-

tion ability of a sample.

Applying a control input ut at time t brings the

robot from state xt at time t to state xt+1 at time t+ 1

according to a given stochastic dynamics model:

xt = f(xt−1, ut−1, wt), wt ∼ N (0,Wt) (1)

where wt is the process noise at time t drawn from a

zero-mean Gaussian distribution with variance Wt that

models the motion uncertainty. After each motion, the

robot receives noisy sensor readings zt at time t that

provide us with partial information about the state ac-

cording to a given stochastic observation model:

zt = h(xt, qt), qt ∼ N (0, Qt) (2)

where qt is the measurement noise drawn from a zero-

mean Gaussian distribution with variance Qt that mod-

els the sensor uncertainty.

We assume that the robot state is represented by

Gaussian (µ,Σ) - µ being the mean and Σ being the

covariance. The systems in our case are generally non-

linear, therefore, the EKF linearizes f and h functions

at each step. The EKF estimates the state at time t

from the estimate at time t − 1 in two separate steps:

process step to propagate the applied control input

Fig. 2 Covariance matrix (M) Vs Localization ability (Ln)
for five sample points (P1 to P5). I = [1, 1, 1], A = [1, 0.15,
1], B = [0.15, 0.15, 1].

ut−1, and a measurement step to incorporate the ob-

tained measurements zt. The process step follows as:

µt = f(µt−1, ut−1) (3)

Σt = GtΣt−1G
T
t + VtWtV

T
t (4)

where Gt and Vt are the Jacobian matrices of f with

respect to x and w. Similarly, the measurement step

follows as:

µt = µt +Kt(h(µt)− zt) (5)

Σt = Σt −KtHtΣt (6)

where Ht is the Jacobian of h with respect to x and Kt

is known as the Kalman gain,

Kt = ΣtH
T
t (HtΣtH

T
t +Qt)

−1 (7)

Equation 4 propagates the uncertainty in robot state

from Σt−1 (at time t − 1) to Σt (at time t) after in-

corporating control input and associated motion noise.

Equation 6 further propagates it from Σt to Σt after

incorporating sensor measurements and the associated

sensor noise. It is Equation 6 that reduces the uncer-

tainty with the help of meaningful measurements and

it is this reduction in uncertainty, from Σt to Σt, that

we are interested in capturing.

This can be achieved if we assume an a priori un-

certainty at each sample point, say a covariance matrix

M. Therefore Equations 6 and 7 will change to:

Σn = M −KnHnM (8)

Kn = MHT
n (HnMHT

n +Qn)−1 (9)

where subscript n stands for newly sampled robot pose.

To capture the localization ability, or reduction in

uncertainty we need a norm on the covariance matrix.

We used trace of the matrix, similar to Prentice and

Roy (2009). Please note that the trace of a matrix is

basically the sum of its eigenvalues (Ribeiro, 2004). Fur-

thermore, the eigenvalues of the covariance matrix are
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proportional to the principal axes of equiprobability

ellipsoids assuming Gaussian probability distribution.

Please note that other metrics such as the determinant

could also have been used. Once the metric is defined,

the localization ability of a sample n is then given by

Ln = ‖M‖−‖Σn‖
‖M‖ ×100. The numerator part captures the

reduction in uncertainty while the denominator acts as

normalization factor. This measure (Ln) is applicable

to Gaussian models, however, in Section 9, we extend

it to multimodal distribution. Since we are using trace,

therefore, we use a diagonal matrix for M, in fact an

identity matrix.

Clearly, Ln in general depends onM . However, Fig 2

empirically shows that the Ln monotonically reduces ir-

respective of specific M (we chose three arbitrary M ’s)

as the distance of samples from beacons increases, i.e.,

ability of sensor data to reduce uncertainty is reduced

for all three different M . It is this trend that is impor-

tant.

As mentioned in the introduction, Ln reflects just

the sensor’s ability to gather accurate information and

not the actual localization uncertainty at the sample.

The latter also depends on the path chosen and the

accuracy of process model and can not be computed at

sampling stage. Once the sample is connected to the

roadmap, the true belief will be computed by search

mechanism (uncertainty propagation from start). Ln is

just a measure to accept or reject a sample.

5 Rapidly-exploring random belief tree with

localization aware sampling strategy

In this section, we provide a Rapidly-exploring Random

Belief Tree with Localization Aware Sampling Strat-

egy (RRBT-LAS) algorithm where we replace uniform

sampling of RRBT (Bry and Roy, 2011) with our lo-

calization aware sampling strategy. Please note that we

did not consider linear-quadratic Gaussian (LQG) con-

troller in RRBT-LAS simply because our focus is on

showing efficiency of our sampling scheme and if RRBT-

LAS is efficient (without LQG) then it will be more effi-

cient after incorporating LQG that requires additional

computation along the edges of the roadmap.

The algorithm operates on a set of nodes V and

edges E, that define a roadmap in state space. Each

node v ∈ V has a state v.x, state estimate covari-

ance v.Σ, a parent node v.parent, and localization abil-

ity v.loc. The state covariance prediction and chance-

constraint checking (Bry and Roy, 2011) is imple-

mented by a PROPAGATE(e, vstart) routine that takes as

arguments an edge and a starting node for that edge,

and returns a covariance matrix at the ending node for

that edge. If the chance-constraint is violated by the

Algorithm 1: RRBT-LAS Algorithm

1 v.x := xstart; v.Σ := Σ0; v.parent := NULL
2 v.loc := tr(M)
3 V := {v}; E := {}
4 while i < P do
5 (xrand, loc ability) :=

LOCALIZATIONBIASEDSAMPLE()
6 vnearest := NEAREST(V, xrand)
7 enearest := CONNECT(vnearest.x, xrand)
8 if PROPAGATE(enearest, vnearest.Σ) then
9 vrand.loc := loc ability; vrand.x := xrand

10 V := V ∪ vrand
11 E := E ∪ enearest
12 Q := Q ∪ vnearest
13 Vnear := NEAR(V, vrand)
14 for all vnear ∈ Vnear do
15 E := E ∪ CONNECT(vnear.x, xrand)
16 Q := Q ∪ vnear
17 end
18 while Q 6= ∅ do
19 u := POP(Q)
20 for all vneighbor of u do
21 Σ′ :=PROPAGATE(eneighbor, u.Σ)
22 if UPDATEBELIEF(vneighbor, Σ′)

then
23 Q := Q ∪ vneighbor
24 end

25 end

26 end

27 end
28 i := i+ 1

29 end

Algorithm 2: LOCALIZATIONBIASEDSAMPLE()

1 xrand := SAMPLE()
2 Lxrand :=COMPUTELOCALIZATIONABILITY(xrand)
3 if Lxrand < LocAbilityTH then
4 Vneighbor := NEIGHBOR(V, xrand, DistTH)
5 for all vneighbor ∈ Vneighbor do
6 if vneighbor.loc > Lxrand then
7 reject sample, go to step 1
8 end

9 end

10 end
11 return (xrand, Lxrand)

uncertainty at ending node, the function returns no co-

variance matrix. The comparison of partial paths at a

node v is implemented by UPDATEBELIEF(v,Σ) routine

that updates the covariance matrix and parent node at

v if the new path is less uncertain.

We also require the following routines: SAMPLE() re-

turns i.i.d. uniform samples, NEAREST(V, vnew) takes

the current set of nodes as an argument and returns the

node in V that minimizes euclidean distance to vnew,

and NEAR(V, vnew) returns every node within some ball

centered at vnew of radius ρ ∝ (log(n)/n)1/d where n is
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Fig. 3 Regions with high uncertainty reduction (better local-
ization ability of sample points) also have high process noise.
However, the path search phase mitigates this when the cost
function is minimized. (a) a stochastic planner knows only
one Gaussian process noise model, i.e., it does not know that
Region 1 has high process noise and Region 2 has low process
noise, therefore, a path is computed which passes through
Region 1 (near beacons), (b) planner knows two Gaussian
process noise models, one corresponding to each Region, the
path search phase that minimizes uncertainty finds a path
that passes through Region 2.

the number of nodes and d is the state dimension (See

(Karaman and Frazzoli, 2010)).

5.1 Algorithm description

The RRBT-LAS algorithm is described in Algorithm 1.

The roadmap is initialized with a single node with state

xstart, covariance Σ0 and its localization ability tr(M)

(trace of matrix M) from lines 1-3. At each iteration of

the while loop, the roadmap is updated by sampling a

new state using our localization aware sampling strat-

egy (line 5), described in Sec 5.2, and then adding edges

to the nearest and near nodes as in the RRG algorithm

Fig. 4 Black color (bold) circle denotes one of the balls of
radius r that is used to tile a path, red color dots repre-
sent randomly placed samples, and hatched region (of radius
DistTH = r) around each sample denotes the restricted re-
gion where samples can not be placed according to heuristic
used in localization aware sampling. This figure shows the sit-
uation where none of the sample has yet been placed inside
the black ball, but some samples are placed at a distance d
from its center such that r < d < r + ε. Even in this worst
case scenario, the probability of generating a sample, given by
the ratio of volume of white region inside the black ball (af-
ter excluding the hatched region) and total volume of white
region, is greater than 0. This ratio approaches one as more
and more samples are placed outside the black ball.

(Karaman and Frazzoli, 2010). Whenever an edge is

added from an existing node to the new node, the ex-

isting node is added to the queue (lines 12 and 16). It

should be noted that the new node is only added to

the roadmap (along with the appropriate edges) if the

chance-constraint can be satisfied by propagating an

existing belief at the nearest node to the new sampled

node as shown on line 8. After all the edges have been

added, the queue is exhaustively searched from lines 18-

26 using UPDATEBELIEF() routine. Note that the true

belief of a node is computed during search mechanism

(uncertainty propagation) from lines 20-25 which is dif-

ferent from its localization ability (line 5).

5.2 Localization aware sampling strategy

Our localization aware sampling strategy puts more

samples in regions where sensor data is able to achieve

higher uncertainty reduction while maintaining ade-

quate samples in regions where uncertainty reduction

is poor. The regions are decided based on a thresh-

old “LocAbilityTH”, i.e., if the localization ability of

a new uniformly sampled point is above this thresh-

old, then the sample lies in regions with high uncer-

tainty reduction and is simply added as a node. If the

localization ability of a sample is below the threshold,

the sample lies in regions with low uncertainty reduc-

tion, and the decision to accept or reject is governed
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by the localization ability of neighbouring nodes. If any

neighbouring node within a ball of radius “DistTH”

centered at the new sample has a localization ability

above that of the new sample, the new sample is sim-

ply rejected, otherwise it is accepted as a node. This

localization aware sampling strategy is implemented by

routine LOCALIZATIONBIASEDSAMPLE() as described in

Algorithm 2.

A main motive behind accepting all the samples

which lie within regions with high uncertainty reduction

is to favour paths through such regions because they

will likely result in high path quality. In the worst case,

i.e., when the only way for a robot is to pass through re-

gions of low uncertainty reduction (as explained in Fig

15 in Sec 8), path quality will be compromised since

there are less samples in these regions (as validated

in simulations, compromise is small), but at the same

time we gain significant savings in planning time. Do

note that if we decrease “DistTH” or “LocAbilityTH”,

our localization aware sampling strategy will converge

to uniform sampling. Correspondingly, a higher DistTH

results in faster run time, however, to retain probabilis-

tic completeness, there is an upper bound (see Sec 5.3).

Furthermore, as we have mentioned before, localiza-

tion uncertainty also depends on process noise at the

sample point, information that is not available at sam-

pling stage since it requires knowledge of path to the

sample point. Assuming that the process noise is simi-

lar within the neighbourhood of a sample, accepting or

rejecting a sample based on Ln (even though we note

that localization depends on both steps of EKF) is de-

fensible. It is indeed possible that regions with high un-

certainty reduction ability of sensor may also have high

process noise, hence the overall uncertainty may still be

high. This is mitigated by the search phase of the plan-

ner where actual uncertainty is computed and the cost

function (based on uncertainty) is minimized. See Fig

3 for such an example. In the figure, Region 1 has high

process noise but our localization aware sampling strat-

egy puts more samples because the localization ability

of sample points is higher in that region as compared to

Region 2 (which gets lesser samples). In (a) a stochastic

planner does not know that Region 1 has high process

noise and Region 2 has very low process noise, it just

knows one Gaussian process noise model from which

it samples the process noise while propagating the un-

certainty from start to goal at path search phase. This

is the case with all the stochastic planners. Therefore,

a path is computed which passes through Region 1.

However, it is not difficult to adapt the planner to dif-

ferent process noise models. In (b) the planner knows

two Gaussian process noise models and which one to

apply for a region at the path search phase. Therefore,

it mitigates the overall uncertainty and finds a path

which passes through Region 2.

5.3 Probabilistic completeness and optimality

First, we explain why we show probabilistic complete-

ness for RRBT-LAS as generally the notion of com-

pleteness is defined useful for deterministic planners.

The class of sampling-based stochastic planners that

we are concerned with in this paper (including RRBT

and thereby RRBT-LAS) first requires the construction

of roadmap (or tree) in configuration space (C-space)

and then followed by an uncertainty propagation step.

This class has underlying collision checks with respect

to nominal paths. Therefore, if a sampling strategy (as

in our case for some value of DistTH) does not allow

to connect the different regions of the C-space then the

next step of uncertainty propagation can not be done

and the planner will not find a path. That is why it

is important to discuss the completeness of sampling

strategy in exploring the C-space prior to uncertainty

propagation step.

The probabilistic completeness is along the lines of

(Choset et al, 2005b) and is essentially proved by as-

suming that a collision free path with clearance ρ ≥ 2r

exists (where 2r is the radius of the largest inscribed

circle within the robot), and then tiling it with a set of

carefully chosen balls of radius r such that generating

a sample in each ball ensures that these samples can

be connected with collision-free edges and therefore, a

collision-free path will be found. As shown in Fig 4,

we can show that for DistTH ≤ r the probability of

generating such samples approaches 1 as the number of

samples increases. We show that RRBT-LAS is proba-

bilistically complete under this reasonable restriction of

DistTH. The complete proof is available in Appendix

A.

As a result of the sampling strategy, RRBT-LAS, in

general, will not be optimal.

6 Localization aware connection strategy

RRBT-TF inherits the connection strategy from the

Rapidly-exploring Random Graph (RRG) (Karaman

and Frazzoli, 2011) which is a deterministic motion

planner. Fig 5 demonstrates how RRBT-TF uses this

connection strategy for incremental stochastic motion

planners. For a newly sampled point xnew, RRBT-TF

propagates the uncertainty from nearest node (selected

based on distance metric) to the new sample and if the

uncertainty obtained satisfies the chance-constraints

then the new sample and corresponding edge (enearest)
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Fig. 5 These snapshots show the connection strategy of RRBT-TF. Red color star denotes beacon, red color ellipses denote
belief nodes and Q denotes search queue. Furthermore, red color node denotes vnearest, thick green line denotes enearest, and
thin green lines denote enear. (a) newly sampled point xnew; (b) vnearest (based on distance metric) is connected to xnew
only if chance-constraints are satisfied and then inserted into Q, so far no belief update at xnew; (c) connecting xnew to all
other neighbouring nodes and inserting them into Q, again no belief update at xnew. RRBT-TF now uses the search queue Q
to iterate through the inserted nodes and update the beliefs.

Fig. 6 The sequence of snapshots show our localization aware connection strategy. All the notations stated in Fig 5 also hold
true in this figure. In addition, green color dashed lines denote the uncertainty propagation without actually adding those
edges. The direction of uncertainty propagation is shown by green arrow. (a) newly sampled point xnew; (b) to search for
vnearest, uncertainty is propagated from neighbouring nodes to xnew; (c) vnearest is found (different from RRBT-TF), if
chance-constraints are satisfied then enearest is added and belief at xnew is updated (shown by green ellipse); (d) uncertainty
propagation from xnew to v2, new path to v2 has more uncertainty, therefore, no update of belief at v2 (also shown by red
color cross mark); (e) similar attempts to connect xnew to other neighbouring nodes v3, v4, v5; (f) successful edges (to nodes
v3, v4) that reduce uncertainty are added along with belief updates at corresponding nodes. Note that only nodes v3, v4 are
inserted into Q.

are added to the roadmap as shown in Fig 5 (b). Note

that the nearest node is now inserted into search queue

Q , however, there is no belief update at xnew. Only af-

ter successful connection of xnew to vnearest, it proceeds

further to connect xnew to other neighbouring nodes

and insert them into Q as shown in Fig 5 (c). RRBT-

TF then uses Q to iterate through inserted nodes and

update the paths (uncertainty propagation).

Now we explain our localization aware connection

strategy which is demonstrated in Fig 6. For a newly

sampled point xnew, instead of connecting it to the dis-

tance metric based nearest node (v4 in case of RRBT-
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TF, Fig 5), we connect it to one of the neighbouring

nodes such that the uncertainty propagation from that

node to xnew gives minimal uncertainty at xnew. We

call that neighbouring node as our nearest node. Fig

6 (b) and (c) demonstrate it: (b) shows the uncer-

tainty propagation from neighbouring nodes to xnew;

(c) shows that v1 is selected as nearest node and it is

connected to xnew (i.e., xnew and enearest are added to

the roadmap given that uncertainty obtained at xnew
satisfies the chance-constraints). In contrast to RRBT-

TF, we update belief at xnew and do not insert v1 into

Q. This is because a least uncertain path to xnew is

already computed. Only after successful connection of

xnew to vnearest (v1), we proceed further to connect

xnew to other neighbouring nodes (v2, v3, v4, v5). Differ-

ent (and efficient) from RRBT-TF, which simply con-

nect xnew to all other neighbouring nodes as in deter-

ministic planner RRG, we connect xnew to only those

nodes for which the new path (through xnew) reduces

the uncertainty. Fig 6 (d) explains it better. In the fig-

ure, the uncertainty propagation from xnew to v2 in-

creases the uncertainty at v2 (green ellipse is bigger

than red ellipse), therefore xnew can not be connected

to v2. Similarly, in Fig 6 (e), the uncertainty propaga-

tion from xnew to v3 and v4 reduces the uncertainty at

v3 and v4, therefore, xnew can be connected to these

nodes. Fig 6 (f) shows the edges that are finally added

to the roadmap along with the belief updates at corre-

sponding nodes (shown by green ellipse). It also shows

the nodes that are inserted into Q. Similar to RRBT-

TF, the planner then uses Q to iterate through inserted

nodes and update the paths.

In summary, our localization aware connection

strategy does not add those edges along which local-

ization is poor and also inserts less number of nodes

into search queue. The combined effect of these two

factors reduces the run time in our case with no impact

on path quality. Also, the roadmap obtained using our

connection strategy is a sub-roadmap of the RRBT-TF

roadmap. These points can be verified by comparing

Fig 6 (f) with Fig 5 (c).

6.1 Rapidly-exploring random belief tree with

localization aware connection strategy

We provide a Rapidly-exploring Random Belief Tree

with Localization Aware Connection Strategy (RRBT-

LAC) algorithm where we replace connection strategy

of RRBT-TF with our localization aware connection

strategy.

The RRBT-LAC algorithm is described in Algo-

rithm 3. The roadmap is initialized with a single node

with state xstart and covariance Σ0 from lines 1-2. At

Algorithm 3: RRBT-LAC Algorithm

1 v.x := xstart; v.Σ := Σ0; v.parent := NULL
2 V := {v}; E := {}
3 while i < P do
4 xrand := SAMPLE(); Σrand := ∅
5 Vnear := {NEAR(V, xrand)}
6 for all vnear ∈ Vnear do
7 enear := CONNECT(vnear.x, xrand)
8 Σ′ :=PROPAGATE(enear, vnear.Σ)
9 if tr(Σ′) < tr(Σrand) or tr(Σrand) = 0 then

10 vnearest=vnear; enearest=enear;
Σrand=Σ′

11 end

12 end
13 if tr(Σrand) 6= 0 then
14 V := V ∪ vrand(xrand, Σrand, vnearest)
15 E := E ∪ enearest
16 for all vnear ∈ Vnear \ vnearest do
17 enear := CONNECT(vrand.x, vnear.x)
18 Σ′ :=PROPAGATE(enear, vrand.Σ)
19 if UPDATEBELIEF(vnear, Σ′) then
20 E := E ∪ enear
21 Q := Q ∪ vnear
22 end

23 end
24 while Q 6= ∅ do
25 u := POP(Q)
26 for all vneighbor of u do
27 Σ′ :=PROPAGATE(eneighbor, u.Σ)
28 if UPDATEBELIEF(vneighbor, Σ′)

then
29 Q := Q ∪ vneighbor
30 end

31 end

32 end

33 end
34 i := i+ 1

35 end

each iteration of the while loop (line 3), the roadmap

is updated by sampling a new state and then adding

edges to the neighbouring nodes using our localization

aware connection strategy. Lines 6-12 correspond to Fig

6 (b) where we propagate the uncertainty from neigh-

bouring nodes to the new sample in order to search

for the nearest node. In lines 14-15 we actually add

the new sample and the corresponding edge (connect-

ing new sample to the nearest node) to the roadmap

which corresponds to Fig 6 (c). Then from lines 16-23

we try to connect the new sample to the other neigh-

bouring nodes and adding them to the search queue Q

only if the corresponding connections reduce the uncer-

tainty at these nodes as shown by the check on line 19.

This corresponds to Fig 6 (d), (e) and (f). After all the

successful edges have been added, the search queue Q is

exhaustively searched from lines 24-32 where the queue

iterates through all the inserted nodes and updates the

paths.
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6.2 Probabilistic completeness

The planner (RRBT-LAC) that uses our localization

aware connection strategy uniformly sample a new

state. Moreover, the connection (to a node) is avoided

only if the new path does not contribute to better lo-

calization at that node as compared to its old path.

Basically, the first connection to a node (whenever pos-

sible, i.e., collision-free) is always established. There-

fore, RRBT-LAC is probabilistically complete and the

proof is same as mentioned in (Choset et al, 2005b).

6.3 Asymptotic optimality

Unlike our sampling strategy, our connection strategy

does not compromise on the path quality (as measured

by path cost) under the assumption that the cost func-

tion used in the connection strategy (we have used trace

of the covariance matrix) and the cost function used

in the path search phase, i.e., path cost (we have used

trace here as well) are the same. It eliminates only those

partial paths for which there exists a better substitu-

tion path with respect to the cost function, i.e. smaller

trace of the covariance matrix. However, if one replaces

our cost function in the planning objective with a differ-

ent cost function, our connection strategy also must use

the same cost function to decide the connection of new

sample to nearest node and other neighbouring nodes.

Under this assumption, RRBT-LAC is asymptotically

optimal on the similar lines as mentioned in RRBT.

7 Extending our localization aware connection

strategy to tree-based planners

The tree version of our localization aware connection

strategy uses the uncertainty metric to connect to

the “nearest” node and then “rewires” (borrowing the

“rewiring” notion of RRT* (Karaman and Frazzoli,

2011)). More formally, we propose the following key

modifications in RRT* to handle stochasticity associ-

ated with a robot’s motion and its sensory readings:

a) Instead of connecting the new sample to the dis-

tance metric based nearest node, we propose to

search for a nearest node (and connect it to the new

sample) as we demonstrate in Fig 6 (b) and (c) for

incremental roadmap. This ensures a least uncertain

path for the new sample.

b) To connect the new sample to other neighbouring

nodes, we propose to use the similar strategy as we

demonstrate in Fig 6 (e), however, it should use the

“rewiring” notion in order to maintain tree struc-

ture. For example: after connecting the new sample

to the nearest node (as described above), the un-

certainty is propagated from the new sample to a

neighbouring node, if it reduces the uncertainty at

that node then the edge connecting that neighbour-

ing node to its parent node is removed and the new

edge connecting the new sample to that neighbour-

ing node is retained. This ensures a least uncertain

path from the root of the tree to a node.

8 Results

In this section, we provide simulation results for RRBT-

LAS, RRBT-LAC and RRBT-LASC (RRBT with our

localization aware sampling and connection strategies).

We used the motion model and sensor model from

(Prentice and Roy, 2009) for all the planners. We exper-

imented with two different sensor models: RangeModel

1 - where beacons have a limited range (we used 2 me-

ters) and RangeModel 2 - where beacons have range

that spans the entire map. For both sensor models, the

sensor data has a distance varying Gaussian noise. First

we report our results with RangeModel 2. Please note

that our localization aware sampling and connection

strategies also hold for complex measurement models,

for example: range sensors.

We used 30 different seeds, each seed generating a

set of 10000 pseudo random collision-free input sam-

ples. We ran all the planners on each set by varying the

number of input samples from 100 to 10000 in incre-

mental manner and provided our simulation results by

averaging the outcome over 30 sets. Our implementa-

tion is in C++ under linux and runs on a Pentium dual

core 2.5 Ghz computer with 4GB memory.

8.1 Simulation results for RRBT-LAS

We compared RRBT-LAS algorithm with RRBT-TF.

We demonstrate our approach in two ways: (i) through

visualization in Fig 7 - 10, we show the efficacy of our

localization aware sampling strategy in judiciously plac-

ing the samples, and (ii) we use plots in Fig 13 and 14

to show that our localization aware sampling leads to

saving in planning time with little compromise on the

quality of path.

Fig 7 shows the placement of nodes in the roadmap

(edges are not shown) for uniform sampling as we in-

crease the number of input samples from a seed. The

uniform sampling strategy is not aware of sensor model,

therefore, the actual number of nodes in the roadmap

are equal to the number of input samples added from

a seed. Big red color balls (7 of them) in the snap-

shots denote the beacons which were used for localiza-
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Fig. 7 RRBT-TF [uniform sampling]. # input samples from a seed [# actual nodes in the roadmap] : (a) 1000 [1000], (b)
5000 [5000], (c) 8000 [8000], (d) 10000 [10000]

Fig. 8 RRBT-LAS [localization aware sampling] using RangeModel 2. # input samples from a seed [# actual nodes in the
roadmap] : (a) 1000 [680], (b) 5000 [2331], (c) 8000 [3347], (d) 10000 [4060] . Here we used DistTH = 30 cm and LocAbilityTH
= 90% (reduction in uncertainty).

Fig. 9 Effect of varying DistTH (while keeping LocAbilityTH = 90% and the number of input samples from a seed as 10000)
in RRBT-LAS using RangeModel 2. DistTH in (a) 10 cm, (b) 30 cm, (c) 40 cm, (d) 60 cm.

Fig. 10 Effect of varying LocAbilityTH (while keeping DistTH = 30 cm and the number of input samples from a seed as
10000) in RRBT-LAS using RangeModel 2. LocAbilityTH in (a) 93.3%, (b) 86.6%, (c) 83.3%, (d) 76.6%.

tion. Compared to uniform sampling (Fig 7), the actual

number of nodes in our localization aware sampling

strategy are significantly reduced as shown in Fig 8.

From the figures, we observe that our localization aware

sampling strategy places more samples in regions with

high uncertainty reduction (near beacons) and elimi-

nates unnecessary samples from regions with low uncer-

tainty reduction. We also show the effect of varying two

thresholds (DistTH and LocAbilityTH) in our localiza-

tion aware sampling strategy. In Fig 9, we varied only

DistTH and observed that the sparsity of nodes in re-

gions with low uncertainty reduction increases with the

increase of DistTH. However, the nodes in regions with

high uncertainty reduction remain unchanged with the

variation of DistTH. Similarly, in Fig 10, we varied only

LocAbilityTH and observed that the area under regions
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Fig. 11 Effect of varying DistTH (while keeping LocAbilityTH = 86.6% and the number of input samples from a seed as
10000) in RRBT-LAS using RangeModel 1. DistTH in (a) 20 cm, (b) 40 cm, (c) 50 cm, (d) 70 cm.

Fig. 12 Effect of varying LocAbilityTH (while keeping DistTH = 30 cm and the number of input samples from a seed as
10000) in RRBT-LAS using RangeModel 1. LocAbilityTH in (a) 93.3%, (b) 86.6%, (c) 83.3%, (d) 76.6%.

Fig. 13 Plots show the comparison of RRBT-TF Vs RRBT-LAS for incremental motion planning (a, b) and of BRM-TF
Vs BRM-LAS for non-incremental motion planning (c). Data labels for each data point along red curves in RRBT-LAS and
BRM-LAS show the actual number of nodes in the roadmap. For RRBT-TF and BRM-TF, actual number of nodes and number
of input samples from seeds are the same, therefore, data labels are not shown along their corresponding curves. For the plots
we used DistTH = 30 cm and LocAbilityTH = 86.6%. Also note that the saving in planning time is for DistTH ≤ r (where
2r is the inscribed radius of robot).

deemed as high uncertainty (higher than the threshold)

reduction increases with the decrease of LocAbilityTH.

In Fig 9 and 10, we kept the number of input samples

from a seed as 10000, therefore, the comparison should

be done with Fig 7(d).

In Fig 13 (a and b), we observe that RRBT-LAS

reduces the planning time significantly as a result of our

localization aware sampling strategy. This can be seen

from the graphs as we move from 200 input samples

to 10000 input samples, split over two sub-plots due to

range of horizontal scales. We also observed that the run

time savings increase supra linearly with the number

of input samples. We talk about plot in Fig 13 (c) at

the end of this section where we discuss the utility of

our sampling strategy for non-incremental stochastic

planners.

Furthermore, we compared the quality of paths gen-

erated by RRBT-TF and RRBT-LAS. We used two

comparison metrics: (a) trace of covariance matrix at

goal, (b) normalized sum of trace of covariance ma-

trices along path. For worst case scenario, where the

only way for the robot is to pass through regions with

low uncertainty reduction (as shown in Fig 15), we ob-

served little compromise on the quality of paths gener-

ated by RRBT-LAS as compared to uniform sampling

of RRBT-TF. Plots in Fig 14 show the comparison.

At 1000 input samples, RRBT-LAS has 10% more un-

certainty along path and 5% more uncertainty at goal.
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Fig. 14 Comparison of path quality between RRBT-TF and RRBT-LAS for a scenario where the only path to goal passes
through regions with low uncertainty reduction, essentially a worst case scenario for path quality for our sampling scheme
(see Fig 15). Y-axis denotes the trace of covariance matrix at goal in plots (a, b) and normalized sum of trace of covariance
matrices along path in plot (c).

Fig. 15 It demonstrates the importance of maintaining an
adequate number of samples in regions with low uncertainty
reduction. In the figure, the regions with high uncertainty
reduction are obstructed by obstacles, therefore a path was
found which most of the time passes through regions with
low uncertainty reduction (away from beacons). The red color
ellipses show the uncertainty at waypoints along the path.

This is the highest degradation in path quality that we

observed as we move from 200 input samples to 10000

input samples. Note that the path quality saturates at

about 7000 samples for the considered case. The com-

promise (even if it is relatively small) on path quality

comes from the fact that, for this scenario, the entire

path passes through regions with low uncertainty re-

duction where we reduce the number of samples. It is

reasonable to expect that for a large majority of sce-

narios, only portions of a path will pass through re-

gions with low uncertainty reduction, hence the path

quality compromise would be even smaller. This is the

key reason that our localization aware sampling strat-

egy simply accepts all the samples within regions with

high uncertainty reduction (as shown in Fig 8 to 10).

We also implemented a non-incremental planner,

Belief Roadmap (BRM) (Prentice and Roy, 2009) with

our Localization Aware Sampling - we call the resulting

planner BRM-LAS. However, our BRM implementation

used the uncertainty propagation approach of van den

Berg et al (2011) to propagate uncertainty along the

edges (instead of using one-step transfer function ap-

proach of BRM). This is because the transfer function

approach, although more efficient, assumes maximum

likelihood observations along the path and therefore,

can not infer the true a-priori probability distributions

along the path. Since it is a straight forward modifica-

tion of BRM, the corresponding pseudo code is not pro-

vided in the paper. We compared BRM-LAS algorithm

with BRM-TF (original BRM with uniform sampling

and uncertainty propagation approach of van den Berg
et al (2011)). Fig 13 (c) shows the simulation results.

From the plot, we observed that our localization aware

sampling strategy reduces the planner run time for non-

incremental planners as well (although the saving is not

as large as for incremental planners).

8.2 Simulation results for RRBT-LAC

We carried out simulations to compare our RRBT-LAC

algorithm with RRBT-TF. We demonstrate our ap-

proach in two ways: (i) through visualization in Fig

16, we show the efficacy of our localization aware con-

nection strategy in reducing the number of edges in the

roadmap, and (ii) we use plots in Fig 17 to show that

our localization aware connection strategy leads to sav-

ing in planning time.

Fig 16 shows the roadmap and planned path for

RRBT-LAC and RRBT-TF as we increase the num-

ber of input samples from a seed. The number of edges



Localization aware sampling and connection strategies for incremental motion planning under uncertainty 15

Fig. 16 RRBT-LAC Vs RRBT-TF. Big red color balls of circular shape represent the beacons. Top row (a, b, c) shows the
roadmap and planned path (blue color) for RRBT-LAC where the # [nodes] and # [edges] are: (a) [100] and [121], (b) [1000]
and [1338], (c) [10000] and [13373]. The bottom row (d, e, f) is for RRBT-TF where the # [nodes] and # [edges] are: (d) [100]
and [308], (e) [1000] and [5007], (f) [10000] and [67405]. Note that the nature of well localized path remains same as we reduce
the number of edges (which do not contribute toward better localization) in our RRBT-LAC.

Fig. 17 Comparison of planning time for RRBT-LAC Vs RRBT-TF. Data labels for each data point along red curves in
RRBT-LAC and blue curves in RRBT-TF show the number of edges in the roadmap. Please take a note of y-axis scale while
comparing different graphs.

in the roadmap constructed by RRBT-LAC are signifi-

cantly reduced as compared to the roadmap of RRBT-

TF. This can be observed by comparing the roadmaps

in (a), (d) and (b), (e) and (c), (f). From the figure, it is

also important to note that the nature of paths planned

by RRBT-LAC and RRBT-TF remains same, i.e., our
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Fig. 18 Comparison of planning time for RRBT-TF Vs RRBT-LAS Vs RRBT-LAC Vs RRBT-LASC for RangeModel 1 and
RangeModel 2. Please take a note of y-axis scale while comparing different graphs.

localization aware connection strategy used in RRBT-

LAC does not compromise on the quality of path. This

is because the edges, which are present in the roadmap

of RRBT-TF but not in the roadmap of RRBT-LAC ,

do not help to reduce the uncertainty along those par-

tial paths and therefore, are removed from the roadmap

of RRBT-LAC. Fig 17 shows that RRBT-LAC reduces

the planning time as a result of our localization aware

connection strategy.

8.3 Simulation results for RRBT-LASC

Fig 18 (c), (d) shows the simulation results for the com-

bined effects of the sampling and connection strategies

where we replace the sampling and connection strate-

gies of RRBT-TF with our localization aware sampling

and connection strategies and call it RRBT-LASC.

We observe that the run time savings increase supra

linearly (from RRBT-LAS to RRBT-LASC) with the

number of input samples.

8.4 Simulation results with different sensor model

Additionally, we also evaluated all the planners with a

different sensor model (RangeModel 1) where beacons

have a limited range (we used 2 meters). We observed

similar behaviour as with RangeModel 2. Fig 11 and 12

show the effect of varying two thresholds (DistTH and

LocAbilityTH) in our localization aware sampling strat-

egy. The run time saving from RRBT-LAS to RRBT-

LASC is shown in Fig 18 (a), (b).

8.5 Simulation results with replicated environment

To demonstrate our sampling and connection strategies

in a different scenario, we replicated a simple environ-

ment used in Bry and Roy (2011) as shown in Fig 19.

In the example, the goal is protected by two obstacles,

with a narrow gap in between. The initial uncertainty

in robot’s pose is such that a direct path to the goal

may result in a collision. It is therefore necessary for
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Fig. 19 These figures show the path planned by RRBT-TF (left) and RRBT-LAS (right) with number of input samples from
a seed as 10000. For RRBT-LAS, we used DistTH as 10 cm and LocAbilityTH as 76.6%. Note that sensor measurements are
available only within a beacon’s range (big red color balls, 5 of them), which is 2 meters in this example.

Fig. 20 Comparison of path quality between RRBT-TF and RRBT-LAS for a scenario shown in Fig 19. Y-axis denotes the
trace of covariance matrix at goal in plots (a, b) and normalized sum of trace of covariance matrices along path in plot (c).

the robot to drive into the well-localized region near

beacons to gain sensor measurements. This will reduce

the uncertainty in its own position which in turn will

decrease the chance of collision while passing through

the narrow gap. We provide our simulation results for

this scenario in Fig 19 to Fig 21.

Fig 19 shows one of the trials of RRBT-TF and

RRBT-LAS after 10000 number of input samples from

a seed. The actual number of samples in case of RRBT-

TF remains same (10000) while in case of RRBT-LAS,

it was reduced to 1893. It is important to note that the

nature of the path remains same where sensor data is

able to achieve higher uncertainty reduction (near to

beacons). Plots in Fig 20 show the difference in quality

of paths generated by RRBT-TF and RRBT-LAS. The

quality slightly degrades in case of RRBT-LAS mainly

because most of the time the path passes through re-

gions where there are no sensor measurements. There-

fore, the sampling strategy used in RRBT-LAS lim-

its the number of samples to only one with in DistTH

as in no measurement zone the localization ability of

two samples remains same. In such scenarios, if we de-
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Fig. 21 Comparison of planning time for RRBT-TF Vs RRBT-LAS Vs RRBT-LAC Vs RRBT-LASC for a scenario shown
in Fig 19.

crease DistTH then the quality will improve but at the

cost of computational time. The comparison of plan-

ning time is shown in Fig 21. We observe that the run

time savings increase supra linearly (from RRBT-LAS

to RRBT-LASC) with the number of input samples.

We also investigated how effective the computed paths

are in getting the robot to reach the goal region reliably.

For that, we executed each computed path ten times by

varying the motion and sensor noises and found that the

paths generated by planners that use our smart strate-

gies are as good as that of RRBT-TF, i.e., in all the

execution trials the robot successfully reached the goal

as shown in Fig 22.

9 Conclusion and future work

We presented efficient localization aware sampling and

connection strategies for incremental sampling-based

stochastic motion planners to reduce the planning time.

Our novel sampling strategy judiciously places the sam-

ples using a new notion of localization ability of a sam-

ple, i.e., it puts more samples in regions where sen-

sor data is able to achieve higher uncertainty reduction

while maintaining adequate samples in regions where

uncertainty reduction is poor. This leads to a less dense

roadmap and hence results in significant time savings.

An important aspect of our work is a new measure,

the “Localization Ability of a sample” that captures

the ability of sensor data in reducing the uncertainty

at the sample point without actually knowing the path

leading to it. We show that a stochastic planner that

uses our sampling strategy is probabilistically complete

for DistTH less than or equal to half of the inscribed

radius of the robot. Robots of larger size will bene-

fit more from the sampling scheme while maintaining

probabilistic completeness.

Fig. 22 Light green color shows the trails of path execution.
In this particular example, we executed the planned path 20
times.

We then presented a localization aware connec-

tion strategy for sampling-based incremental stochas-

tic motion planners that uses an uncertainty aware ap-

proach in connecting the newly sampled point to the

neighbouring nodes. At each iteration of incrementally

adding a new sample, our connection strategy does not
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consider those edges which result into increase of un-

certainty along those partial paths and also reduces the

number of search queue iterations (which are required

to update the paths) by inserting less number of neigh-

bouring nodes into it. As the roadmap will grow by

adding more samples, the number of edges that our con-

nection strategy judiciously removes will also increase

and the number of search queue iterations will decrease.

The combined effect of these two factors reduces the

planner run time significantly.

We implemented incremental stochastic motion

planners (RRBT-TF, RRBT-LAS, RRBT-LAC,

RRBT-LASC) and demonstrated our localization

aware sampling and connection strategies. We empir-

ically show that a) our localization aware sampling

strategy places less samples and find a well-localized

path in shorter time with little compromise on the

quality of path as compared to existing sampling tech-

niques, b) our localization aware connection strategy

finds a well-localized path in shorter time with no

compromise on the quality of path as compared to

existing connection techniques, and finally c) combined

use of our sampling and connection strategies further

reduces the planner run time. Additionally, we also

implemented non-incremental (BRM-TF and BRM-

LAS) stochastic motion planners and observed that

our localization aware sampling strategy reduces the

planner run time for non-incremental planners as well

(although the saving is not as large as for incremental

planners).

Finally, we showed that our localization aware con-

nection strategy (for incremental roadmap) can also be

used for tree-based stochastic planners. For that we ex-

tended RRT* to handle stochasticity associated with a

robot’s motion and its sensory readings.

We believe that Ln can be extended to the mul-

timodal distribution using Monte Carlo localization

(MCL) (Fox et al, 1999) that uses a particle filter to

represent the distribution of likely states, with each par-

ticle representing a possible robot state. The MCL al-

gorithm works in two stages. First, it uses the motion

model to shift the particles to predict its new state af-

ter the motion and the likelihood (weight) of each new

particle is computed using sensor measurements. In the

second stage, the particles are resampled based on how

well the actual sensed data correlate with the predicted

state.

To extend our Ln measure to multimodal distribu-

tion, we bypass the prediction of new particles based on

the robot motion as we do not know the control com-

mands at the sampling stage. The procedure to com-

pute the localization ability of a sample is then as fol-

lows. We could assume a fixed distribution of particles

around a sampled point with each particle assigned the

same weight. This set of particles essentially serves the

same role as M for the Gaussian case. The same distri-

bution is used for all samples by appropriately trans-

forming corresponding to the co-ordinates of the sam-

ple points. Sensor measurement step is then used to

assign new weights to each particle followed by a re-

sampling step as in standard MCL. This new set of

particles essentially serves the same role as Σn for the

Gaussian case. Kullback-Leibler divergence (Wikipedia,

2015) that measures the information gain between two

probability distributions can then be used as localiza-

tion ability of a sample.
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A Appendix: Probabilistic completeness proof

for RRBT-LAS

In this section, we provide a formal proof that a planner with
our localization aware sampling strategy is probabilistically
complete for DistTH less than or equal to half of the inscribed
radius of the robot.

The worst case situation that leads to probabilistic com-
pleteness issues with our approach is using RangeModel 1
where the sensors (beacons in our case) have limited range.
In that case the heuristic used in our sampling strategy will
limit the samples to only one (within ball of radius DistTH)
for regions with low uncertainty reduction. This is where the
completeness issue arises. If the value of DistTH is large then
the planner that uses our sampling strategy may not be able
to find a path. We show that if we keep DistTH below half of
the inscribed radius of the robot (a reasonable assumption)
then if there exists a collision-free path, a planner that uses
our sampling strategy will also find one. For the proof we
assume that the entire path passes through regions with low
uncertainty reduction (a worst case scenario for our sampling
strategy). Also note that our proof builds along the lines of
Choset et al (2005b), therefore, we follow most of their nota-
tions.
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Fig. 23 [Case DistTH ≤ ρ
2

] - black colour (bold) circle denotes one of the balls B ρ

2
(qi) that is used to tile a path, red colour

dots represent randomly placed samples, and hatched region (of radius DistTH=ρ
2

) around each sample denotes the restricted
region where samples can not be placed according to heuristic used in localization aware sampling. This figure shows the
situation (excluding b) where none of the samples has yet been placed inside the black ball. (a) neighbouring samples around
B ρ

2
(·) restrict some region (hatched areas inside the black ball) inside the black ball where samples can not be placed, (b)

neighbouring samples totally covered B ρ

2
(·) but in that case samples lie on the periphery (closed set), (c) samples are placed

at a distance d such that ρ
2
< d < ρ

2
+ ε, even in this worst case scenario the probability of generating a sample in B ρ

2
(·) is

greater than 0 (see text for explanation).

Suppose qs, qg ∈ Cfree (free region of C-space) are two
robot configurations that can be connected by a path in
Cfree. RRBT-LAS is considered to be probabilistically com-
plete, if for any given (qs, qg)

lim
n→∞

Pr[(qs, qg)FAILURE] = 0 (10)

where Pr[(qs, qg)FAILURE] denotes the probability that
RRBT-LAS fails to answer the query (qs, qg) after a roadmap
in Cfree with n samples has been constructed. The outline
of the probabilistic completeness proof is as follows: First we
assume that a path π from qs to qg exists. We then tile the
path with a set of carefully chosen balls such that generat-
ing a sample in each ball ensures that these samples can be
connected with appropriate collision-free edges and hence a
collision-free path, π̂ between qs and qg will be found by
RRBT-LAS and the probability of generating such samples
approaches 1 with increasing n.

Assume a path π (of length L) from qs to qg exists in d
dimensional C-space. The clearance of π, denoted ρ = clr(π),
is the farthest distance away from the path at which a given
point can be guaranteed to be collision-free. Note that ρ ≥ 2r,
where r is the inscribed radius of the robot. The measure µ
denotes the volume of a region of space, e.g, µ(Bε(x)) mea-
sures the volume of an open ball Bε(x) of radius ε centered
at x. If A ⊂ Cfree is a measurable subset and x is a random
point chosen from Cfree, then

Pr(x ∈ A) =
µ(A)

µ(Cfree)
(11)

We now tile the path π with balls each of radius ρ
2

. Let

m = d2L
ρ
e and observe that there are m points (centers

of balls) on the path such that dist(qi, qi+1) < ρ
2

, where

dist is a Euclidean metric on Rd. Let yi ∈ Bρ/2(qi) and
yi+1 ∈ Bρ/2(qi+1). Then the line segment yiyi+1 must lie
inside Cfree since both endpoints lie in the ball Bρ(qi).
An illustration of this basic fact is given in Figure 7.17 of
Choset et al (2005b). Let V ⊂ Cfree be a set of n configura-
tions generated by our localization aware sampling strategy.
If there is a subset of configurations {y1, ..., ym} ⊂ V such
that yi ∈ Bρ/2(qi), then each ball will get a sample and a

path from qs to qg will be found. Let I1, ..., Im be a set of
indicator variables such that each Ii witnesses the event that
there is a y ∈ V and y ∈ Bρ/2(qi). It follows that RRBT-
LAS succeeds in answering the query (qs, qg) if Ii = 1 for all
1 ≤ i ≤ m. If at least one of the indicator variables is 0 then
RRBT-LAS would fail. Therefore, the probability of failure
(Equation 10) then can be written as

Pr[(qs, qg)FAILURE] ≤ Pr

(
m∨
i=1

Ii = 0

)
(12)

≤
m∑
i=1

Pr[Ii = 0] (13)

where the last inequality follows from the union bound. We
now mainly focus on the computation of Pr[Ii = 0] for ith

ball, i.e., after placing n samples by our localization aware
sampling strategy what is the probability that none of these
samples lie in a ball Bρ/2(qi).

For RangeModel 1, in regions outside the sensor range
where there is no sensor information, hence no uncertainty
reduction, our localization aware sampling strategy does not
allow another sample within the vicinity (DistTH) of an al-
ready placed sample point (see Fig 23). Therefore, the proba-
bility of failure to generate a second sample in a ball Bρ/2(qi)
depends on where the first sample was placed and so on. Let
I1i , ..., I

n
i be a set of indicator variables for the ith ball such

that each Iki , for all 1 ≤ k ≤ n, witnesses the event that the
kth sample does not lie in ball Bρ/2(qi). These events are de-
pendent on each other. Below we provide the expressions to
compute Pr[Iki = 0] that will lead us to the computation of
Pr[Ii = 0]. For the first two samples, the probability of fail-
ure to generate a sample inside ball Bρ/2(qi) can be written
as

Pr[I1i = 0] =

{
1−

µ(Bρ/2(qi))

µ(Cfree)

}
(14)

Pr[I2i = 0] =

∫
Pr(I2i = 0 | x1)Pr(x1)dx1 (15)

In above expression x1 denotes the position of first sample.
Above expression is just the marginalization over the position
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Fig. 24 [Case DistTH > ρ
2

] - This figure shows that if
DistTH > ρ

2
then the restricted regions of neighbouring sam-

ples may completely block the ball Bρ/2(qi) and will prevent
generation of a sample inside it. This will lead to the failure of
a planner that uses our localization aware sampling strategy.

of first sample. Similarly, the expression for the third sample
is

Pr[I3i = 0] =

∫∫
Pr(I3i = 0 | x1, x2)Pr(x2 | x1)

Pr(x1)dx2dx1 (16)

and for nth sample the expression (for Pr[Ini = 0]) is

=

∫
· · ·
∫
Pr(Ini = 0 | x1, ..., xn−1), ..., P r(x2 | x1)

Pr(x1)dxn−1dxn−2, ..., dx2dx1. (17)

Clearly, parameters ρ
2

(radius of ball B) and DistTH (re-
stricted region around a sample) are embedded in above ex-
pressions. Using Equations 14-17, Equation 13 can now be
written as

Pr[(qs, qg)FAILURE] ≤
⌈

2L

ρ

⌉( n∏
k=1

Pr[Iki = 0]

)
(18)

Note that Pr(Ini = 1 | x1, ..., xn−1) denotes the proba-
bility of generating the nth sample inside ball Bρ/2(qi) given
that n− 1 samples have been placed. This is nothing but the
ratio of volume of white region inside the black ball (after ex-
cluding the hatched region) and total volume of white region
(with reference to Fig 23). In general, this can be written as

Pr(Ini = 1 | x1, ..., xn−1) =
µ(BCRfree)

µ(CRfree)
(19)

where CRfree denotes the Cfree left after excluding the re-

stricted regions around already placed samples and BCRfree
denotes the same but inside ball Bρ/2(qi). This ratio ap-
proaches one as more and more samples are placed outside
the black ball. That implies that Pr(Ini = 0 | x1, ..., xn−1)
approaches zero. The expression in Equation 17 is one of
the product terms in RHS of inequality 18. Convergence of
Pr[Ini = 0] (to 0) will lead to the convergence of RHS of in-
equality 18. Therefore, Pr[(qs, qg)FAILURE] converges to 0

as the number of samples increases, hence showing the com-
pleteness of RRBT-LAS. The same completeness can not be
guaranteed for DistTH > ρ

2
(see Fig 24).


