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Abstract— We present a localization aware efficient sampling
strategy for sampling-based motion planning under uncertainty
that uses a new notion of localization ability of a sample. It puts
more samples in regions where sensor data is able to achieve
higher uncertainty reduction while maintaining adequate sam-
ples in regions where uncertainty reduction is poor. This leads
to a less dense roadmap and hence results in significant time
savings in the path search phase. We provide simulation results
that show stochastic planners with our sampling strategy place
less samples and find a well-localized path in shorter time with
little compromise on the quality of path as compared to existing
sampling techniques. We also show that a stochastic planner
that uses our sampling strategy is probabilistically complete
under some reasonable conditions on parameters.

I. INTRODUCTION

Safe execution of motion plans and accurate information
of robot state are of critical importance for many robotic
tasks. As a result of uncertainty associated with a robot’s
motion and its sensory readings, the true robot state is not
available. Therefore, it is important that a planning method
must account for these uncertainties for safe and collision-
free execution of motion plans. Partially observable Markov
decision process (POMDP) [1] is a general framework to
deal with motion and sensing uncertainty, however due to its
significant complexity, solving realistic problems with large
state spaces remains a challenge, even though progress has
been made on the efficiency issues of these approaches [2],
[3], [4]. A class of planners [5], [6], [7] assume the presence
of landmark regions in the environment where accumulated
motion uncertainty can be “reset”. Another class of planners
[8]–[14] uses sampling-based methods (graph-based and
tree-based) where uncertainty is propagated from start to
goal. We call this type as stochastic motion planners.

In this paper, we address the sampling-based stochas-
tic motion planners. These planners are computationally
demanding as compared to their counterparts that do not
consider uncertainty. This is because they do not follow
the “optimal substructure” property [14] of paths, i.e., the
incurred costs on different edges depend on each other. To
compute the cost of an edge emanating from a node, the full
knowledge of belief (robot pose and associated uncertainty)
at the node is required, this in turn requires full knowledge of
the history of observations and actions leading up to the node
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1. For real time applications, for instance to facilitate anytime
planning [15], it is important to reduce this run time. We
propose to do achieve at least part of this run time reduction
via judicious placing of samples.

It is important to note that sampling techniques used in
current stochastic motion planners do not distinguish be-
tween well-localized and poorly-localized regions and given
that large open spaces generally tend to be poorly-localized,
a uniform distribution tends to place a large number of
samples in these poorly-localized regions. This leads to a
dense roadmap which in turn increases the computational
cost especially if collision checks are carried out in 3D (for
example, for mobile manipulators) and furthermore, due to
the uncertainty propagation during search phase, the cost of
additional “unnecessary” samples is even more.

We propose a localization aware sampling strategy that
avoids putting large number of samples by considering
the “localization ability” of a new sample relative to its
neighbouring nodes in the roadmap. It puts more samples
in regions where sensor data is able to achieve higher
uncertainty reduction while maintaining an adequate number
of samples in regions where uncertainty reduction is poor.
This leads to a less dense roadmap that results in significant
time savings in the path search phase. Note that localization
of a robot at a point depends on 1) the path taken to reach the
point and 2) on the update based on sensor model. However,
at the sampling stage the path taken to a node is not available.
We develop a new measure of “localization ability of a
sample” that “extracts” how well a sensor observation at a
sample point reduces uncertainty without explicitly knowing
the path leading to it and use this measure to design a
localization aware sampling strategy.

A key reason we use reduction in uncertainty as a measure
is that higher uncertainty is more detrimental and hence
has higher cost for many tasks. Nevertheless, one possible
consequence of our sampling technique is that path quality
(we use true localization uncertainty along the path as a
quality metric) may suffer, if the path passes through regions
where uncertainty reduction is poor. Via simulation results,
we show that, at least empirically, there is little compromise
in path quality. Furthermore, note that since at the sampling
stage, true localization uncertainty is not available, a cost
function metric using it can not be computed, hence can
not be used. The best one can do is to use the uncertainty
reduction ability of the sensor at the sample point, as we

1 [14] is an exception in the sense that the incurred costs on different
edges do not depend on each other. This comes at the cost of some
assumptions like holonomic and Gaussian systems with trivial dynamics.



do. Note that in the search phase (where edges are added
and uncertainty is propagate along the path), appropriate cost
function is still minimized.

We provide simulation results that show that stochas-
tic planners (we used RRBT [13]) with our localization
aware sampling strategy place less samples and find a well-
localized path in shorter time with little compromise on the
quality of path as compared to existing sampling techniques
used in these planners. Furthermore, we also show that our
sampling strategy, with suitable restrictions on its parameters,
is also probabilistically complete.

II. RELATED WORK

A large number of sampling schemes have been used
with the standard (without uncertainty) sampling based plan-
ners (RRT or PRM) such as, sample around and near the
obstacles, or in narrow corridors, medial axis sampling to
sample far away from the obstacles, use visibility to reduce
the number of samples, adaptive strategies such as restrict
sampling to size-varying balls around nodes, entropy guided
approaches, etc. [16] and [17] provide a survey of recent
work in non-uniform sampling for PRMs. Above mentioned
sampling approaches do not consider the uncertainty associ-
ated with robot and its sensors.

Missiuro and Roy [18] proposed an approach where the
sampling strategy incorporates mapping uncertainty (they do
not consider localization uncertainty that we consider in this
paper) in which the decision to accept or reject a sample
is based on its collision probability (computed using each
of the possible world model). However, the issue of “how
good a sample would be in localizing the robot?”, which we
explicitly consider does not arise in their problem context.
As mentioned earlier, computing the collision probability in
the presence of localization uncertainty of a sample right at
the sampling stage, i.e., before connecting it to the roadmap
is not possible. Note that at sampling stage we consider only
sensing uncertainty while for path search (where uncertainty
is propagated from start) we consider both motion and
sensing uncertainty. To the best of our knowledge, we are
not aware of any other sampling approach that considers
uncertainty. All sampling-based stochastic motion planners
[8]–[14] use one of the sampling techniques from determin-
istic motion planners and address the motion, sensing, and
mapping uncertainty at query phase where a search algorithm
searches the roadmap by propagating uncertainty from start
to goal.

Although not directly related to motion planning (or
sampling techniques), the notion of uncertainty has been used
in the past to select the best sample (the next best goal of
robot) for search and exploration. For example: [19] first
plans for each of the possible goal candidates and select
the one (as next best goal) which in addition to information
maximization (unknown region), also has good localization
along the path.

III. LOCALIZATION ABILITY OF A SAMPLE

In this section, we describe how to compute the local-
ization ability of a sample. For this, we first briefly explain
the extended Kalman filter (EKF) [11] and then develop an
expression for the localization ability of a sample.

Applying a control input ut at time t brings the robot from
state xt at time t to state xt+1 at time t+ 1 according to a
given stochastic dynamics model:

xt = f(xt−1, ut−1, wt), wt ∼ N (0,Wt) (1)

where wt is the process noise at time t drawn from a zero-
mean Gaussian distribution with variance Wt that models
the motion uncertainty. After each motion, the robot receives
noisy sensor readings zt at time t that provide us with partial
information about the state according to a given stochastic
observation model:

zt = h(xt, qt), qt ∼ N (0, Qt) (2)

where qt is the measurement noise drawn from a zero-mean
Gaussian distribution with variance Qt that models the sensor
uncertainty.

We assume that the robot state is represented by Gaussian
(µ,Σ) - µ being the mean and Σ being the covariance. The
systems in our case are generally non-linear, therefore, the
EKF linearizes f and h functions at each step. The EKF
estimates the state at time t from the estimate at time t− 1
in two separate steps: process step to propagate the applied
control input ut−1, and a measurement step to incorporate
the obtained measurements zt. The process step follows as:

µt = f(µt−1, ut−1) (3)

Σt = GtΣt−1G
T
t + VtWtV

T
t (4)

where Gt and Vt are the Jacobian matrices of f with respect
to x and w. Similarly, the measurement step follows as:

µt = µt +Kt(h(µt)− zt) (5)

Σt = Σt −KtHtΣt (6)

where Ht is the Jacobian of h with respect to x and Kt is
known as the Kalman gain,

Kt = ΣtH
T
t (HtΣtH

T
t +Qt)

−1 (7)

Equation 4 propagates the uncertainty in robot state at time
t− 1 from Σt−1 to Σt after incorporating control input and
associated motion noise. Equation 6 further propagates it
from Σt to Σt after incorporating sensor measurements and
the associated sensor noise. It is Equation 6 that reduces the
uncertainty with the help of meaningful measurements and
it is this reduction in uncertainty, from Σt to Σt, that we are
interested in capturing.

This can be achieved if we assume an a priori uncertainty
at each sample point, say a covariance matrix M. Therefore
Equations 6 and 7 will change to:

Σn = M −KnHnM (8)



Kn = MHT
n (HnMHT

n +Qn)−1 (9)

where subscript n stands for newly sampled robot pose. The
localization ability of a sample n is then given by Ln =
tr(M)−tr(Σn)×100

tr(M) . Since we are using trace2, therefore, we
use a diagonal matrix for M, in fact an identity matrix.

Clearly, Ln in general depends on M . However, Figure
1 empirically shows that the Ln monotonically reduces
irrespective of specific M (we chose three arbitrary M ’s) as
the distance of samples from beacons increases, i.e., ability
of sensor data to reduce uncertainty is reduced for all three
different M . It is this trend that is important.

Fig. 1. Covariance matrix (M ) Vs Localization ability (Ln) for five sample
points (P1 to P5). I = [1, 1, 1], A = [1, 0.15, 1], B = [0.15, 0.15, 1].

As mentioned in the introduction, Ln reflects just the
sensor ability to gather accurate information and not the
actual localization uncertainty at the sample. The latter also
depends on the path chosen and the accuracy of process
model and can not be computed at sampling stage. Once
the sample is connected to the roadmap, the true belief will
be computed by search mechanism (uncertainty propagation
from start). Ln is just a measure to accept or reject a sample.

IV. RAPIDLY-EXPLORING RANDOM BELIEF TREE WITH
LOCALIZATION AWARE SAMPLING STRATEGY

In this section, we provide a Rapidly-exploring Random
Belief Tree with Localization Aware Sampling Strategy
(RRBT-LAS) algorithm where we replace uniform sampling
of RRBT [13] with our localization aware sampling strategy.
Please note that we did not consider linear-quadratic Gaus-
sian (LQG) controller in RRBT-LAS simply because our
focus is on showing efficiency of our sampling scheme and
if RRBT-LAS is efficient (without LQG) then it will be more
efficient after incorporating LQG that requires additional
computation along the edges of the roadmap. We construct
a roadmap in C-space but the belief paths resulted from the
belief propagation do not form a graph rather they form a
random tree in belief space, therefore, termed as RRBT.

The algorithm operates on a set of nodes V and edges
E, that define a roadmap in state space. Each node v ∈ V

2Note that other works have commonly used trace as a measure, however,
there are other options as well, for example, one can use determinant.

has a state v.x, state estimate covariance v.Σ, a parent
node v.parent, and localization ability v.loc. The state
covariance prediction and chance-constraint checking [13]
is implemented by a PROPAGATE(e, vstart) routine that takes
as arguments an edge and a starting node for that edge,
and returns a covariance matrix at the ending node for that
edge. If the chance-constraint is violated by the uncertainty
at ending node, the function returns no covariance matrix.
The comparison of partial paths at a node v is implemented
by UPDATEBELIEF(v,Σ) routine that updates the covariance
matrix and parent node at v if the new path is less uncertain.

We also require the following routines: SAMPLE() returns
i.i.d. uniform samples, NEAREST(V, vnew) takes the current
set of nodes as an argument and returns the node in V that
minimizes euclidean distance to vnew, and NEAR(V, vnew)
returns every node within some ball centered at vnew of
radius ρ ∝ (log(n)/n)1/d where n is the number of nodes
and d is the state dimension (See [20]).

A. Algorithm Description

The RRBT-LAS algorithm is described in Algorithm 1.
The roadmap is initialized with a single node with state
xstart, covariance Σ0 and its localization ability tr(M) (trace
of matrix M ) from lines 1-3. At each iteration of the while
loop, the roadmap is updated by sampling a new state using
our localization aware sampling strategy (line 5), described
in Section IV-B, and then adding edges to the nearest and
near nodes as in the RRG algorithm [20]. Whenever an edge
is added from an existing node to the new node, the existing
node is added to the queue (lines 12 and 16). It should be
noted that the new node is only added to the roadmap (along
with the appropriate edges) if the chance-constraint can be
satisfied by propagating an existing belief at the nearest node
to the new sampled node as shown on line 8. After all the
edges have been added, the queue is exhaustively searched
from lines 18-26 using UPDATEBELIEF() routine. Note that the
true belief of a node is computed during search mechanism
(uncertainty propagation) from lines 20-25 which is different
from its localization ability (line 5).

B. Localization Aware Sampling Strategy

Our localization aware sampling strategy puts more sam-
ples in regions where sensor data is able to achieve higher
uncertainty reduction while maintaining adequate samples
in regions where uncertainty reduction is poor. The regions
are decided based on a threshold “LocAbilityTH”, i.e., if
the localization ability of a new uniformly sampled point is
above this threshold, then the sample lies in regions with
high uncertainty reduction and is simply added as a node. If
the localization ability of a sample is below the threshold, the
sample lies in regions with low uncertainty reduction, and the
decision to accept or reject is governed by the localization
ability of neighbouring nodes. If any neighbouring node
within a ball of radius “DistTH” centered at the new sample
has a localization ability above that of the new sample, the
new sample is simply rejected, otherwise it is accepted as



Algorithm 1: RRBT-LAS Algorithm

v.x := xstart; v.Σ := Σ0; v.parent := NULL1

v.loc := tr(M)2

V := {v}; E := {}3

while i < P do4

(xrand, loc ability) := LOCALIZATIONBIASEDSAMPLE()5

vnearest := NEAREST(V, xrand)6

enearest := CONNECT(vnearest.x, xrand)7

if PROPAGATE(enearest, vnearest.Σ) then8

vrand.loc := loc ability; vrand.x := xrand9

V := V ∪ vrand10

E := E ∪ enearest11

Q := Q ∪ vnearest12

Vnear := NEAR(V, vrand)13

for all vnear ∈ Vnear do14

E := E ∪ CONNECT(vnear.x, xrand)15

Q := Q ∪ vnear16

end17

while Q 6= ∅ do18

u := POP(Q)19

for all vneighbor of u do20

Σ′ :=PROPAGATE(eneighbor, u.Σ)21

if UPDATEBELIEF(vneighbor,Σ
′) then22

Q := Q ∪ vneighbor23

end24

end25

end26

end27

i := i+ 128

end29

Algorithm 2: LOCALIZATIONBIASEDSAMPLE()

xrand := SAMPLE()1

Lxrand
:=COMPUTELOCALIZATIONABILITY(xrand)2

if Lxrand
< LocAbilityTH then3

Vneighbor := NEIGHBOR(V, xrand, DistTH)4

for all vneighbor ∈ Vneighbor do5

if vneighbor.loc > Lxrand
then6

reject sample, go to step 17

end8

end9

end10

return (xrand, Lxrand
)11

a node. This localization aware sampling strategy is imple-
mented by routine LOCALIZATIONBIASEDSAMPLE() as described
in Algorithm 2.

A main motive behind accepting all the samples which lie
within regions with high uncertainty reduction is to favour
paths through such regions because they will likely result
in high path quality. In worst case, i.e., the only way for a
robot is to pass through regions of low uncertainty reduction
(as explained in Figure 9 in Section V), path quality will
be compromised (as validated in simulations, compromise

Fig. 2. Black color (bold) circle denotes one of the balls of radius r that
is used to tile a path, red color dots represent randomly placed samples,
and hatched region (of radius DistTH = r) around each sample denotes
the restricted region where samples can not be placed according to heuristic
used in localization aware sampling. This figure shows the situation where
none of the sample has yet been placed inside the black ball, but some
samples are placed at a distance d from its center such that r < d < r+ ε.
Even in this worst case scenario, the probability of generating a sample,
given by the ratio of volume of white region inside the black ball (after
excluding the hatched region) and total volume of white region, is greater
than 0. This ratio approaches one as more and more samples are placed
outside the black ball.

is small), but at the same time we gain significant savings
in planning time. Do note that if we decrease “DistTH”
or “LocAbilityTH”, our localization aware sampling strat-
egy will converge to uniform sampling. Correspondingly, a
higher DistTH results in faster run time, however, to retain
probabilistic completeness, there is an upper bound (see
Section IV-C).

Furthermore, as we have mentioned before, localization
uncertainty also depends on process noise at the sample
point, information that is not available at sampling stage
since it requires knowledge of path to the sample point.
Assuming that the process noise is similar within the neigh-
bourhood of a sample, accepting or rejecting a sample based
on Ln (even though we note that localization depends on
both steps of EKF) is defensible. It is indeed possible that
regions with high uncertainty reduction ability of sensor may
also have high process noise, hence the overall uncertainty
may still be high. This is mitigated by the search phase of the
planner where actual uncertainty is computed and the cost
function (based on uncertainty) is minimized. See http://
www.sfu.ca/˜vpilania/research.html for such
an example (for lack of space, we have not included it here).

C. Probabilistic Completeness Proof

The probabilistic completeness is along the lines of [21]
and is essentially proved by assuming that a collision free
path with clearance ρ ≥ 2r exists, and then tiling it
with a set of carefully chosen balls of radius r such that
generating a sample in each ball ensures that these samples
can be connected with collision-free edges and therefore, a
collision-free path will be found. As shown in Figure 2, we
can show that for DistTH ≤ r, where 2r is the radius of
the largest inscribed circle within the robot, the probability
of generating such samples approaches 1 as the number of

http://www.sfu.ca/~vpilania/research.html
http://www.sfu.ca/~vpilania/research.html


Fig. 3. RRBT [uniform sampling]. # input samples from a seed [# actual nodes in the roadmap] : (a) 1000 [1000], (b) 5000 [5000], (c) 8000 [8000], (d)
10000 [10000]

Fig. 4. RRBT-LAS [localization aware sampling] using RangeModel 2. # input samples from a seed [# actual nodes in the roadmap] : (a) 1000 [680],
(b) 5000 [2331], (c) 8000 [3347], (d) 10000 [4060] . Here we used DistTH = 30 cm and LocAbilityTH = 90% (reduction in uncertainty).

Fig. 5. Effect of varying DistTH (while keeping LocAbilityTH = 90% and the number of input samples from a seed as 10000) in RRBT-LAS using
RangeModel 2. DistTH in (a) 10 cm, (b) 30 cm, (c) 40 cm, (d) 60 cm.

Fig. 6. Effect of varying LocAbilityTH (while keeping DistTH = 30 cm and the number of input samples from a seed as 10000) in RRBT-LAS using
RangeModel 2. LocAbilityTH in (a) 93.3%, (b) 86.6%, (c) 83.3%, (d) 76.6%.

samples increases. We show that RRBT-LAS is probabilis-
tically complete under this reasonable restriction of DistTH.
The complete proof can be accessed online at http://
www.sfu.ca/˜vpilania/research.html.

V. EXPERIMENTAL RESULTS

We compared RRBT-LAS algorithm with RRBT. We used
the motion model and sensor model from [11] for both the
planners. For sensor model, the beacons have range that
spans the entire map with a distance varying Gaussian noise

in the sensor data. We denote this sensor model as Range-
Model 2. Please note that our localization aware sampling
strategy also holds for complex measurement models, for
example: range sensors.

We used 30 different seeds, each seed generating a set
of 10000 pseudo random collision-free input samples. We
ran both the planners on each set by varying the number of
input samples from 100 to 10000 in incremental manner and
provided our simulation results by averaging the outcome
over 30 sets. Our implementation is in C++ under linux and

http://www.sfu.ca/~vpilania/research.html
http://www.sfu.ca/~vpilania/research.html


Fig. 7. Plots show the comparison of RRBT Vs RRBT-LAS for incremental motion planning. Data labels for each data point along red curves in
RRBT-LAS show the actual number of nodes in the roadmap. For RRBT, actual number of nodes and number of input samples from seeds are the same,
therefore, data labels are not shown along their corresponding curves. For the plots we used DistTH = 30 cm and LocAbilityTH = 86.6%. Also note that
the saving in planning time is for DistTH ≤ r (where 2r is the inscribed radius of robot).

Fig. 8. Comparison of path quality between RRBT and RRBT-LAS for a scenario where the only path to goal passes through regions with low uncertainty
reduction, essentially a worst case scenario for path quality for our sampling scheme (see Figure 9). Y-axis denotes the trace of covariance matrix at goal
in left plot and normalized sum of trace of covariance matrices along path in right plot.

runs on a Pentium dual core 2.5 Ghz computer with 4GB
memory.

We demonstrate our approach in two ways: (i) through
visualization in Figures 3 - 6, we show the efficacy of our
localization aware sampling strategy in judiciously placing
the samples, and (ii) we use plots in Figures 7 and 8 to
show that our localization aware sampling leads to saving in
planning time with little compromise on the quality of path.

Figure 3 shows the placement of nodes in the roadmap
(edges are not shown) for uniform sampling as we increase
the number of input samples from a seed. The uniform
sampling strategy is not aware of sensor model, therefore,
the actual number of nodes in the roadmap are equal to the
number of input samples added from a seed. Big red color
balls (7 of them) in the snapshots denote the beacons which
were used for localization. Compared to uniform sampling
(Figure 3), the actual number of nodes in our localization
aware sampling strategy are significantly reduced as shown
in Figure 4. From the figures, we can observe that our
localization aware sampling strategy places more samples
in regions with high uncertainty reduction (near beacons)
and eliminates unnecessary samples from regions with low

uncertainty reduction. We also show the effect of varying two
thresholds (DistTH and LocAbilityTH) in our localization
aware sampling strategy. In Figure 5, we varied only DistTH
and observed that the sparsity of nodes in regions with
low uncertainty reduction increases with the increase of
DistTH. However, the nodes in regions with high uncertainty
reduction remain unchanged with the variation of DistTH.
Similarly, in Figure 6, we varied only LocAbilityTH and
observed that the area under regions with high uncertainty
reduction increases with the decrease of LocAbilityTH. In
Figures 5 and 6, we kept the number of input samples from
a seed as 10000, therefore, the comparison should be done
with Figure 3(d).

In Figure 7, from the comparison of RRBT with RRBT-
LAS, we observed that RRBT-LAS reduces the planning time
significantly as a result of our localization aware sampling
strategy. This can be seen from the graphs as we move from
200 input samples to 10000 input samples (along the x axis).
We also observed that the run time savings increase supra
linearly with the number of input samples. Please note that
the planning time difference at 1002 samples in right plot
can be observed in left plot.



Fig. 9. It demonstrates the importance of maintaining an adequate
number of samples in regions with low uncertainty reduction. In the figure,
the regions with high uncertainty reduction are obstructed by obstacles,
therefore a path was found which most of the time passes through regions
with low uncertainty reduction (away from beacons). The red color ellipses
show the uncertainty at waypoints along the path.

Furthermore, we compared the quality of paths generated
by RRBT and RRBT-LAS. We used two comparison metrics:
(a) trace of covariance matrix at goal, (b) normalized sum
of trace of covariance matrices along path. For worst case
scenario, where the only way for the robot is to pass through
regions with low uncertainty reduction (as shown in Figure
9), we observed little compromise on the quality of paths
generated by RRBT-LAS as compared to uniform sampling
of RRBT. Plots in Figure 8 show the comparison. At 1000
input samples, RRBT-LAS has 10% more uncertainty along
path and 5% more uncertainty at goal. This is the highest
degradation in path quality that we observed as we move
from 200 input samples to 10000 input samples. Note that the
path quality saturates at about 7000 samples for the consid-
ered case. The small compromise on path quality comes from
the fact that, for this scenario, the path passes through regions
with low uncertainty reduction where we reduce the number
of samples. For a large majority of scenario, only portions of
a path pass through regions with low uncertainty reduction,
the path quality compromise would be much smaller. This is
the key reason that our localization aware sampling strategy
simply accepts all the samples within regions with high
uncertainty reduction (as shown in Figures 4 to 6). Due
to space limitation, we provide other plots (from 200 input
samples to 1000 input samples) at http://www.sfu.ca/
˜vpilania/research.html.

Additionally, we also evaluated all the planners with a
different sensor model (we call it RangeModel 1) where
beacons have a limited range (we used 2 meters). We
observed similar behaviour as with RangeModel 2 and the
corresponding plots can be accessed online at http://
www.sfu.ca/˜vpilania/research.html.

VI. CONCLUSION

We presented a novel sampling strategy for sampling-
based stochastic motion planners that judiciously places the
samples using a new notion of localization ability of a
sample, i.e., it puts more samples in regions where sensor
data is able to achieve higher uncertainty reduction while
maintaining adequate samples in regions where uncertainty
reduction is poor. An important aspect of our work is a new
measure, the “Localization Ability of a sample” that captures
the ability of sensor data in reducing the uncertainty at the
sample point without actually knowing the path leading to
it. We show that a stochastic planner that uses our sampling
strategy is probabilistically complete for DistTH less than
or equal to half of the inscribed radius of the robot. Robots
of larger size will benefit more from the sampling scheme
while maintaining probabilistic completeness.

We implemented incremental (RRBT and RRBT-LAS)
stochastic motion planners and demonstrated our localization
aware sampling strategy using two type of sensor models:
RangeModel 1 and RangeModel 2. We empirically show that
the planners with our sampling strategy take less time to find
a path with little compromise in path quality.
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