
Autonomous Robots manuscript No.
(will be inserted by the editor)

A hierarchical and adaptive mobile manipulator planner with
base pose uncertainty

Vinay Pilania · Kamal Gupta

Received: date / Accepted: date

Abstract We present a Hierarchical and Adaptive Mo-

bile Manipulator Planner (HAMP) that plans for both

the base and the arm in a judicious manner - allow-

ing the manipulator to change its configuration au-

tonomously when needed if the current arm configu-

ration is in collision with the environment as the mo-

bile manipulator moves along the planned path. This is

in contrast to current implemented approaches that are

conservative and fold the arm into a fixed home configu-

ration. Our planner first constructs a base roadmap and

then for each node in the roadmap it checks for collision

status of current manipulator configuration along the

edges formed with adjacent nodes, if the current ma-

nipulator configuration is in collision, the manipulator

C-space is searched for a new reachable configuration

such that it is collision-free as the mobile manipulator
moves along the edge and a path from current configu-

ration to the new reachable configuration is computed.

We show that HAMP is probabilistically complete. We

compared HAMP with full 9D PRM and observed that

the full 9D PRM is outperformed by HAMP in each

of the performance criteria, i.e., computational time,

percentage of successful attempts, base path length,

and most importantly, undesired motions of the arm.

We also evaluated the tree versions of HAMP, with

RRT and Bi-directional RRT as core underlying sub-

planners, and observed similar advantages, although

the time saving for Bi-directional RRT version is mod-

est. We then present an extension of HAMP (we call it
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HAMP-U) that uses belief space planning to account

for localization uncertainty associated with the mobile

base position and ensures that the resultant path for

the mobile manipulator has low uncertainty at the goal.

Our experimental results show that the paths generated

by HAMP-U are less likely to result in collision and

are safer to execute than those generated by HAMP

(without incorporating uncertainty), thereby showing

the importance of incorporating base pose uncertainty

in our overall HAMP algorithm.

Keywords Mobile manipulation · Planning under

uncertainty · Motion planning · Navigation · Adaptive

1 Introduction

Autonomous mobile manipulation includes several

intertwined sub-problems including finding suitable

grasps and grasping the object (Ciocarlie et al, 2010;

Saxena et al, 2008), finding the best mobile base lo-

cation and manipulator configuration corresponding to

the end effector pose (Monastero and Fiorini, 2009),

close-range scene segmentation for table-top manipu-

lation (Rusu et al, 2009) with static mobile base, and

finding the mobile manipulator path from start to goal

(base poses and manipulator configurations) (Berenson

et al, 2008). In this paper we focus on the last sub-

problem, i.e., determine a collision-free path for the mo-

bile manipulator from a given start configuration to a

desired goal configuration. Most work (Berenson et al,

2008; Marder-Eppstein et al, 2010; Scholz et al, 2011)

usually takes a very conservative approach, which is,

to fold the arm to some safe “home” configuration and

then plan for a 2D projected footprint of the mobile ma-

nipulator in a projected 2D representation of the world

from start base pose to goal base pose.
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Fig. 1 This example (simulation environment for scenarios A
and B in Section 7) shows the mobile manipulator carrying a
long payload (120 cm long stick) and it needs to pass through
a doorway to reach the goal on the other side.

Clearly, this approach has two main limitations: (i)

the projection of the mobile manipulator with extended

arm may have a large footprint, and may be in collision

with 2D projected map, while the mobile manipulator

is collision-free in 3D map, and more fundamentally (ii)

it may not always possible to change the arm to a pre-

defined home configuration at base’s start pose because

of physical constraints or there may be task constraints

that prevent the arm being folded, e.g., if the robot is

carrying a glass of liquid which needs to be kept vertical

to avoid spillage. Another example is where the mobile

manipulator is carrying a long payload, say a pole and it

needs to continuously move the arm (and thereby the

pole to avoid the pole colliding with walls and other

objects in the environment) to navigate through the

doors and hallways. In such scenarios, mobile manip-

ulator with arm in start configuration can not reach

the goal unless it changes the arm configuration several

times along the path. One such example is shown in

Figure 1.

One possible solution to this motion planning prob-

lem is to use sampling based planners (Lavalle, 1998;

Kavraki et al, 1996) in full configuration (C-space) of

the mobile manipulator. However, besides being some-

what computationally expensive, the computed path

for the mobile manipulator may result into undesired

and excessive motions for the manipulator. This is pri-

marily because of the randomness associated with sam-

pling based planners and persists even after applying

a post processing smoothing filter. In most scenarios,

there is no need to move manipulator except at certain

base poses - the undesired arm motion (post smoothing)

refers to this extraneous manipulator motion while the

base is moving. We would like to avoid such undesired

manipulator motions. Furthermore, it is generally dif-

( , )b m
g g g

q q q=

m
g

q
( , )b m

s s s
q q q=

m
s

q

m
C

m
C

m
C

m
C

Table

Fig. 2 A schematic illustrating the planned mobile manip-
ulator path Πbm given by HAMP algorithm. Please see text
for explanation.

ficult to ensure tight error bounds on the mobile base

that are comparable to those for the arm and hence

synchronizing controllers between the two can be dif-

ficult. Therefore, it is quite reasonable to execute arm

and base motions sequentially, and within this overall

paradigm, our HAMP approach, as outlined below, is

quite reasonable1.

We propose a Hierarchical and Adaptive Mobile Ma-

nipulator Planner (HAMP) to solve the problem and

a schematic illustrating the planned mobile manipula-

tor path is given in Fig 2. The HAMP algorithm is

a two stage process: in the first stage it constructs a

base roadmap (using PRM in the base configuration

space) where it connects the start and goal base poses

(with manipulator remaining in a fixed home2 config-

uration). In the second stage, the algorithm reconfig-

ures or “adapts” the manipulator configuration to a

new configuration along the edges in the base roadmap

constructed earlier by checking for the manipulator col-

lisions along them from start to goal. This two stage

process iterates until a collision-free mobile manipulator

path is found or the time limit is over. The second stage

works as follows: for each node in the base roadmap, the

current manipulator configuration is checked for col-

lisions along the edges corresponding to the adjacent

nodes. If it is in collision along an edge in the base

roadmap, then the manipulator is reconfigured (while

base is stationary at the base node) by moving it to

a new configuration such that the new configuration is

collision-free if the mobile manipulator with manipula-

1 Thanks to the anonymous referee for pointing this out.
2 Note that there are other options here, e.g., one could

simply construct the base roadmap for the base only, however,
this could lead to several nodes/edges being invalidated in the
subsequent stage.
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tor in new configuration were to move along the edge in

the base roadmap. This reconfiguration step is carried

out via motion planning for the manipulator in the ma-

nipulator’s C-space constructed at the given base node.

If no such manipulator configuration is found, then a

new edge will be searched for in the base roadmap, and

the process repeats.

Fig 2 schematically illustrates HAMP algorithm. In

the figure, blue dots correspond to base pose nodes, the

red segments are the base edges, and light purple el-

lipses (small and big) corresponding to each blue dot

is the manipulator C-space. Small purple ellipses with

one white dot indicate that the manipulator configura-

tion, corresponding to the white dot, is free along the

base edge (to the next base node) and no manipulator

planning was required. Three red color dash lines de-

note the physical gates (overhead view). The big ellipses

show where manipulator planning was done, with the

manipulator roadmap shown with its nodes and edges

inside each ellipse. For the first three ellipses, the ma-

nipulator configuration at each base node just before

the gate was in collision along the edge (as the mo-

bile manipulator moves through the gates) and hence

the roadmap was built and searched for a path and

the sequence of light green edges shows the path. The

manipulator moves along this path to the end config-

uration, which is, by construction (as explained in the

detailed algorithm in Sec 4), collision free as the mo-

bile manipulator moves across the gate to the next base

node. The fourth big ellipse (at base goal pose) shows

a reconfiguration step to the goal configuration of the

manipulator.

Summarizing, HAMP searches in two sub-spaces
(base sub-space and manipulator sub-space) in a novel

way and on a “need to” basis, i.e., the search in ma-

nipulator space is invoked only for those points in the

base-space where it is needed. Hence, HAMP searches

a much smaller size of space, as a result, it computes

paths in shorter time with higher success rate than a

search in the full configuration space of the mobile ma-

nipulator, and more importantly, it also avoids unneces-

sary motion of the arm, as is the case for the full search.

Both these key points are validated in our experiments.

Our choice to use PRM as underlying core sub-planner

(for base and for the manipulator) within the HAMP

framework is primarily because when we incorporate

base uncertainty (as explained in the next paragraph)

in the mobile manipulator paths, it allows us to op-

timize the paths with respect to the base uncertainty

(at the goal). This would not be the case if we were

to use tree versions of sampling based planners (such

as RRT (Lavalle, 1998)) as core sub-planners within

HAMP. However, RRT (in the absence of uncertainty)
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Fig. 3 A schematic illustrating the planned mobile manipu-
lator path Πbm given by HAMP-U algorithm. Please see text
for explanation.

is generally more efficient in terms of planning time

than PRM, especially the Bi-directional RRT (Kuffner

and LaValle, 2000). Therefore, we also evaluated the

tree versions of HAMP with RRT and Bi-directional

RRT as the core underlying sub-planners.

Most traditional motion planning algorithms as-

sume deterministic motion and leave the issues of uncer-

tainty to the control phase in which the path is executed

with a feedback controller. However, a mobile base in-

herently has localization uncertainty due to wheel slip-

page and other unmodeled errors. It is important to

consider this uncertainty in the planning stage for safe

and collision-free execution of motion plans. Hence, we

extend our HAMP approach - we call it HAMP-U - to

account for localization uncertainty associated with the

mobile base position and a schematic illustrating the

planned mobile manipulator path is given in Fig 3. Blue

dots correspond to mean base pose nodes, and the un-

certainty in position is shown by ellipses (green color).

In HAMP-U, in the first stage, the base roadmap is sub-

stituted by a belief roadmap (BRM) in the belief-space

of mobile base, using the approach proposed by Prentice

and Roy (2009) with additional modifications explained

later in Sec 6. In the second stage, the search algorithm

searches for the mobile manipulator path in the BRM

by propagating base pose uncertainty from start to goal,

in a manner that minimizes the goal uncertainty, as in

(Prentice and Roy, 2009), again, with some modifica-

tions. Note that, in Fig 3, the mobile base path detours

from the shortest path (Fig 2) through sensing-rich en-

vironment to remain well-localized, a direct and well

known consequence of standard BRM. Due to this low

uncertainty in base position, the planned mobile manip-

ulator motions are also less likely to result in collision

as validated in our experiments. While mobile robotics
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literature (mobile base only) has extensively considered

uncertainty (world is 2-dimensional in most of these

cases, although some recent work has considered 3D

world, but for SLAM and not planning), to the best

of our knowledge, this uncertainty is largely ignored in

mobile manipulation. Huang and Gupta (2009) consid-

ered this, but for the case of fixed mobile base only. Our

framework in HAMP-U considers this uncertainty ex-

plicitly by embedding BRM within the overall HAMP

algorithm.

In summary, the key contributions of our research

work are: 1) a Hierarchical and Adaptive Mobile Ma-

nipulator Planner (HAMP) that moves the arm in a

judicious and on a “need to” basis; 2) a mathemati-

cal proof to show that HAMP is probabilistically com-

plete; 3) an algorithm HAMP-U (uncertainty extension

to HAMP) that extends the HAMP framework while

accounting for localization uncertainty associated with

mobile base position.

2 Related work

In this section we review the related work and place our

research work into context. First, we review the related

work on mobile manipulation planning, and then we

consider the work concerning motion planning under

uncertainty.

2.1 Mobile manipulation planning

Most of the previous work (Tanner and Kyriakopou-

los, 2000; Tan and Xi, 2001; Yamamoto and Yun, 1994;

Yang and Brock, 2010) on mobile manipulation mainly

deals with the coordination of the mobile base and the

manipulator motion for following a given end effector

trajectory. In motion planning related work, Marder-

Eppstein et al (2010) and Scholz et al (2011) use a com-

pact 3D representation of the environment, but path

planning is accomplished in a projected 2D environ-

ment representation with a 2D footprint of the mo-

bile manipulator. Such an approach will fail, for exam-

ple, where the mobile manipulator is required to push

and store a cart under a table. Hornung et al (2012)

improved upon (Marder-Eppstein et al, 2010; Scholz

et al, 2011) using a multi-layered 2D representation of

both the robot and the environment. However, since the

planning is still carried out only for the base and not

the manipulator, their approach will fail in the scenar-

ios where arm configuration needs to be changed while

navigating from start to goal. Hornung and Bennewitz

(2012) proposed an adaptive approach for efficient hu-

manoid robot navigation, which allows for finding so-

lutions for foot-step planning where planning based on

a 2D grid fails. Our approach has a similar adaptive

flavour, but it is in the context of mobile manipulation

and not foot step planning. In the context of mobile

manipulators, hierarchical strategies have been used to

estimate reachable workspace (Yang et al, 2011). An

interesting use of adaptive dimensionality has recently

been introduced in Gochev et al (2012). Their approach

uses deterministic search (A* over discretized C-space)

in a low dimensional end-effector C-space interleaved

with tracking in the full mobile manipulator C-space.

It is shown that the resulting planner outperforms a

full dimensional RRT in a class of tasks where the end-

effector is carrying a large payload. One could char-

acterize this approach toward the “greedy” end of the

spectrum since the search is, in effect, guided by a path

for the end-effector. While this approach could be used

in a relatively small region near the goal, as shown in

the example tasks in the above mentioned paper, a key

problem is that due to its deterministic search, it is

not applicable to relatively large areas as is the case

in our examples. Finally a genetic optimization based

planner for a mobile manipulator that plans motions in

real time in dynamic environments is presented in Van-

noy and Xiao (2008). The planner takes advantage of

redundancy in optimizing overall motion via randomly

invoking a “stop” genetic operator that allows for ei-

ther the base or the manipulator to remain stationary

during a portion of the trajectory. Note that the perfor-

mance of genetic optimization relies on maintaining a

diverse population of trajectories that belong to differ-

ent homotopic groups which is a significant challenge.

2.2 Planning under uncertainty

While standard motion planning algorithms often as-

sume that a mobile base can track its position reli-

ably during path execution stage (as is the case with

HAMP), in reality, there is always some uncertainty

associated with mobile base position. The uncertainty

typically originates from three sources: (i) motion un-

certainty - uncertainty in a robot’s motion often caused

by factors such as wheel slippage, (ii) sensor uncertainty

- uncertainty in its sensory readings, and (iii) map un-

certainty - uncertainty in the environment map or im-

perfect locations of features (information sources) in

the environment. Our key motivation to extend HAMP

to consider this uncertainty in the planning stage is

mainly to ensure safe and collision-free execution of

motion plans. The uncertainty associated with the mo-

bile base is typically of the order of few tens of cen-

timeters and there are no significant dynamics asso-

ciated with the motion of the base (unlike for exam-
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ple, an aerial vehicle). Hence, in our case, extensions

of the sampling based framework to incorporate un-

certainty, e.g., the belief roadmap (BRM) approach of

Prentice and Roy (2009), are more appropriate. These

approaches, essentially add an uncertainty dimension(s)

to the robot state and each belief state then is a com-

bination of robot state and the associated uncertainty

(Huang and Gupta, 2008; Melchior and Simmons, 2007;

Gonzalez and Stentz, 2005; Lambert and Gruyer, 2003;

Roy and Thrun, 1999). Furthermore, we assume that

the controller is capable of driving the state estimate

back to the desired path, a reasonable assumption for

slow moving vehicles such as the mobile base in our mo-

bile manipulator. With these characteristics in mind,

the belief space roadmap (BRM) approach was incor-

porated within our HAMP Framework. An attractive

aspect of BRM is that, while it explicitly simulates mea-

surements along candidate paths and then chooses the

path with minimal uncertainty at the goal, it uses co-

variance factorization techniques to significantly reduce

the computation burden of this process.

More recent approaches have also accounted for the

controller in the planning stage, e.g., Platt et al (2010)

and van den Berg et al (2011), however, there is sig-

nificant increase in the computational cost. Neverthe-

less, these could also be incorporated within the HAMP

framework. We also mention that partially observable

Markov decision process (POMDP) (Smallwood and

Sondik, 1973; Kaelbling et al, 1998) is a general frame-

work to deal with motion and sensing uncertainty, how-

ever due to its significant complexity, solving realis-

tic problems with large state spaces remains a chal-

lenge, even though progress has been made on the ef-

ficiency issues of these approaches (Pineau et al, 2003;

Kurniawati et al, 2009, 2012). Kurniawati et al (2012)

also takes into account mapping uncertainty by embed-

ding Guibas et al (2008) within POMDP framework.

A recent framework, SLQG-FIRM, proposed by Agha-

mohammadi et al (2014) extends the sampling based

framework to belief space. Finally, Guibas et al (2008);

Missiuro and Roy (2006); Burns and Brock (2007);

Nakhaei and Lamiraux (2008) consider the mapping

uncertainty about the environment but not the mo-

tion and sensing uncertainty. Another class of plan-

ners Bouilly et al (1995); Lazanas and Latombe (1995);

Fraichard and Mermond (1998) assumes the presence

of landmark regions in the environment where accumu-

lated motion uncertainty can be “reset”.

3 Problem formulation

We use qi = (qbi , q
m
i ) in Cbm, the C-space of the mo-

bile manipulator, to represent ith mobile manipulator

configuration, where qbi = [x, y, θ] ∈ Cb, the C-space of

the mobile base, is the base configuration (also called

base pose) and qmi = [θ1, θ2, ...., θd] ∈ Cm, the C-space

of the d degree of freedom manipulator, is the manipu-

lator configuration. Cbfree is the set of all collision-free

base poses and Cbobs is the set of poses resulting in col-

lision with obstacles. For a given base pose, qbi , Cmfree
denotes the set of free manipulator configurations (for

simplicity we omit the reference to the corresponding

base node qbi in the notation) and Cmobs denotes the set

of manipulator configurations that are in collision with

obstacles. We use qmH to denote the home configuration

of the manipulator, a compact and folded configuration

of the arm, specified by the user. For simplicity of ex-

planation, the 3D environment is assumed to be known

or acquired by previous sensing, but our framework is

extended to the simultaneous sensing and planning by

incorporating a view planner similar to Yu and Gupta

(2004); Torabi et al (2007).

Given a 3D map, the start qs = (qbs, q
m
s ) and goal

qg = (qbg, q
m
g ) configurations of the mobile manipula-

tor, the objective of our HAMP algorithm is to find a

collision-free path.

Because of the hierarchical and adaptive approach,

the nature of mobile manipulator path will have a spe-

cific structure as shown in Fig 2 and can be expressed

as

Πbm = {(qbs, πms ), (qbr2 , π
m
2 ), ..., (qbrn−1

, πmn−1), (qbg, π
m
g )}

We call this type of specific mobile manipulator path

as an H-path (short for HAMP-path). It consists of a

sequence of poses qbri at which the manipulator recon-

figuration step takes place (subscript r denotes recon-
figuration), i.e., the base remains stationary and the

manipulator moves along path πmi to a new configura-

tion, the end point of πmi . It is implicit in the notation

that the mobile manipulator motion from a node, say

(qbri , π
m
i ) to (qbri+1

, πmi+1) consists of three steps: (i) at

qbri , the manipulator will reconfigure by moving along

πmi to the last configuration in πmi , (ii) with this new

fixed manipulator configuration, the base moves along

base path segment πbi to qbri+1
, and (iii) manipulator

again reconfigures by moving along πmi+1 to the last con-

figuration in πmi+1.

4 The HAMP algorithm

We now describe the HAMP algorithm in detail ex-

plained in Algorithm 1.

In the first stage, CONSTRUCTBASEROADMAP() routine

is invoked to build a base roadmap in Cbfree by ran-

domly sampling base poses (with manipulator in a fixed
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Algorithm 1: Πbm = HAMP(qs, qg, q
m
H )

Input: qs := (qbs, q
m
s ), qg := (qbg, q

m
g ) and qmH

Output: H-path Πbm from qs to qg
Gb := CONSTRUCTBASEROADMAP(qbs, qbg, qmH )1

Augment node structure with best path p := ∅, cost2

c := 0 and reconfiguration paths RPATHS
[nadj ] = ∅ such

that ni := {qb, qmH , p, c, RPATHS
[·]}

while ! TIMEUP do3

Q← ns := {qbs, qms , ∅, 0, ∅}4

while Q 6= ∅ and ! TIMEUP do5

n :=POP(Q)6

if n[qb] = ng[qb] then7

πmng=SEARCHMANIPPATHATBASEGOAL(q̂mg , q
m
g )8

if πmng = ∅ then9

Continue (go to step 5)10

end11

Exit (go to step 33)12

end13

for all n′ of adj[n] and n′ /∈ n[p] do14

if n[c]+cost[enn′ ] < n′[c] then15

(qmnew, π
m
n ) :=SEARCHMANIPPATH(n, n′)16

if πmn 6= ∅ then17

n′[c] := n[c]+cost[enn′ ]18

n[RPATHS
[n′]] := πmn19

n′ = {−, qmnew, n[p]∪{n′}, n′[c],−}20

Q← Q ∪ {n′}21

end22

end23

end24

end25

if ! TIMEUP then26

for each node ni in Gb do27

ni := {ni[qb], qmH , ∅, 0, ∅}28

end29

EXPANDBASEROADMAP()30

end31

end32

return Πbm33

home configuration) and connecting them as in Ba-

sicPRM routine in (Hsu et al, 2006), and the pseudo-

code for it is given in Algorithm 2. It constructs a base

roadmap in an incremental manner until start and goal

nodes are connected. Please note that while the sam-

pling is in Cb, the collision checks are done for the

entire mobile manipulator with manipulator in fixed

home configuration. One could simply construct the

base roadmap for base only, however, this could lead to

several nodes/edges being invalidated in the subsequent

stage. Algorithm 2 returns a connected base roadmap

for start and goal base poses with manipulator in home

configuration.

For second stage, we augment the node structure

such that each node n, in addition to a base pose n[qb],

and manipulator configuration n[qm], now has a best

path field n[p], a cost n[c] (Euclidean metric in Cb) and

Algorithm 2:Gb=CONSTRUCTBASEROADMAP(qbs,q
b
g,q

m
H )

ns :=ADDNODE(qbs, q
m
H ); ng :=ADDNODE(qbg, q

m
H )1

Create edge if COLLISIONFREE(ns, ng)2

while ! SAMECOMPONENT(ns, ng) and ! TIMEUP do3

Sample base poses qbi from Cbfree using a standard4

PRM sampling strategy to build base roadmap
node set {ni} such that ni := (qbi , q

m
H )

Create edge set {eij} between nodes (ni, nj) if5

COLLISIONFREE(ni, nj)
end6

return Gb = {{ni}, {eij}}7

a set of reconfiguration path fields n[RPATHS
[nadj ]], one

path for each adjacent node, nadj .

The second stage described in Lines 5-25 of Algo-

rithm 1 is a search mechanism that searches the base

roadmap using a variant of Dijkstra’s algorithm and

SEARCHMANIPPATH() routine in an intertwined manner.

First, we change the manipulator configuration at start

node, ns, in the base roadmap from home qmH to a given

configuration qms and insert it in the search queue (Line

4). This is needed because the base roadmap was con-

structed with qmH which is different from qms .

At each iteration of the while loop (Line 5), a node

n is popped out from search queue and if the base com-

ponent is not the base goal node then the manipula-

tor configuration corresponding to node n is checked

for collisions along each edge formed with adjacent

nodes n′ and in case a collision is detected, a recon-

figuration path is searched for the manipulator. This is

done by invoking a routine SEARCHMANIPPATH(). If rou-

tine SEARCHMANIPPATH() returns success as shown by

the check on Line 17, then we insert adjacent node n′

into the search queue and update the member variables

at nodes n and n′ (Lines 18-21). At node n, we up-

date the reconfiguration path corresponding to adja-

cent node n′, while at node n′, we change the manipu-

lator configuration with the last configuration qmnew in

the reconfiguration path and also update the new path

and the corresponding cost. If the base component of

popped out node (n[qb]) from search queue is the base

goal node (ng[q
b]), then simply a manipulator reconfig-

uration path πmng is searched from achieved manipulator

configuration q̂mg to the desired manipulator configura-

tion qmg at base goal pose (Lines 7-13). The final path

is computed using ng[p] and ni[RPATHS
[nadj ]] such that

ni, nadj ∈ ng[p].
If the search mechanism (stage 2) fails to find a

path in the base roadmap constructed during stage 1,

then we go back to stage 1 to further expand the base

roadmap and the process repeats. The base roadmap

expansion step is carried out from Lines 26-31 by in-

voking a routine EXPANDBASEROADMAP() which randomly
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Algorithm 3: (qmnew, π
m
n )=SEARCHMANIPPATH(n, n′)

Input: base roadmap nodes n, n′ along an edge en,n′
Output: Manipulator path πmn at node n with qmn as

start and qmnew as goal such that qmnew is
collision-free along an edge en,n′

n′′ := (qbn′ , q
m
n )1

if COLLISIONFREE(n, n′′) then2

qmnew ← qmn and πmn ← {qmn }3

end4

else5

goalm := COMPUTEARMGOALS(n, n′, KGoals)6

nms :=ADDNODE(qmn ); nmgi :=ADDNODE(goalm[i])7

while ! ARMPLANNINGTIMEUP and ! TIMEUP do8

Sample qmi from Cmfree
using a standard9

PRM sampling strategy to build arm roadmap
and search for a path πmn from nms to nmgi
qmnew ← nmgi10

end11

end12

return (qmnew, π
m
n )13

Algorithm 4: goalm=COMPUTEARMGOALS(n, n′,KGoals)

Input: base roadmap nodes n, n′ and number of arm
configurations (KGoals) to be computed

Output: a set of arm configurations as goals
while i < KGoals and ! ARMGOALSTIMEUP do1

sample qmi from Cmfree
2

u← {qbn, qmi } and v ← {qbn′ , qmi }3

if COLLISIONFREE(u, v) then4

goalm := goalm ∪ {qmi }; i := i+ 15

end6

end7

return goalm8

samples additional base poses and adds them to the

base roadmap, as well as expands the base nodes in nar-

row regions. We have implemented the random-bounce

walks strategy of standard PRM (Kavraki et al, 1996).

One could also use other strategies (Hsu et al, 2006).

Please note that this expansion of the base roadmap

(possibly repeated multiple times), allows HAMP to

deal with narrow passages as well (theoretically, we

show HAMP is probabilistically complete). Let’s say we

pop out a node in the base roadmap near the entrance

to a narrow passage. It is not possible to get into the

narrow passage without reconfiguring the arm. How-

ever, we are so close to the entrance that the arm can

not be reconfigured into the proper configuration for en-

try (it would hit the walls). In this case, HAMP will pop

out the next node from the search queue and will try to

enter the narrow passage through different base paths.

For instance, it might try a base node away from the

entrance, reconfigure the arm such at this node, that

might allow it to enter the narrow passage (e.g., see

Scenario E, Figure 7 (c) in Section 7.2).

Now we explain the SEARCHMANIPPATH() routine

which works as follows: it first checks if the manipula-

tor configuration at base node n is collision-free along

the edge formed with adjacent base node n′ (Lines 1-

4, Algorithm 3). If it is, then the returned manipula-

tor path is that single configuration. This corresponds

to the small purple ellipses with one white dot in Fig

2, which indicates that the manipulator configuration,

corresponding to the white dot, is collision free along

the edge and no manipulator planning was required.

Otherwise, a set of manipulator configurations (goalm)3

are randomly sampled at base node n using a routine

COMPUTEARMGOALS(), described in Algorithm 4, such

that each of the configuration in the goalm is collision-

free along the edge formed with an adjacent base node

n′. The manipulator planning is carried out at base

node n, by constructing an arm roadmap using an incre-

mental PRM and a manipulator path is searched from

manipulator configuration at base node n to any of the

goal configurations in goalm. To make the distinction

between roadmap nodes in Cb and Cm , we use super-

script m for the arm roadmap nodes in Cm. The current

version of SEARCHMANIPPATH() does not incorporate any

task space constraints (such as keeping the payload ori-

entation vertical), however in the future versions, this

will be replaced by the ATACE (Alternate Task and

Configuration Space) algorithm (Yao and Gupta, 2007;

Stilman, 2007) that does incorporate task constraints.

We can divide the failures to solve the overall prob-

lem within permitted time in three types:

a) Type 1 - CONSTRUCTBASEROADMAP() fails to connect

the start and goal configurations of the mobile ma-

nipulator with manipulator in home configuration

for the entire base roadmap.

b) Type 2 - SEARCHMANIPPATH() fails to search

for a manipulator path, mainly because, ei-

ther COMPUTEARMGOALS() fails to find manipula-

tor goal configurations within ARMGOALSTIMEUP or

SEARCHMANIPPATH() fails to connect the start manip-

ulator configuration at node n to any of the goal con-

figurations reported by routine COMPUTEARMGOALS()

within ARMPLANNINGTIMEUP.

c) Type 3 - path search reaches the goal node in the

base roadmap but SEARCHMANIPPATHATBASEGOAL()

fails to compute a path from achieved manipulator

configuration to the desired one.

3 We are using multiple possible goal configurations be-
cause empirically it was faster than searching for a single
goal configuration. Most likely, it is because the likelihood of
multiple goal configurations being difficult to reach would be
significantly lower.
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5 Probabilistic completeness proof

This section deals with probabilistic completeness proof

of HAMP. Suppose qs, qg ∈ Cbmfree are two mobile ma-

nipulator configurations that can be connected by an

H-path in Cbmfree . HAMP is considered to be proba-

bilistic complete, if for any given (qs, qg)

lim
n→∞
m→∞

Pr[(qs, qg)FAILURE] = 0 (1)

where Pr[(qs, qg)FAILURE] denotes the probability

that HAMP fails to answer the query (qs, qg) after a

base roadmap in Cbfree with n samples and manipula-

tor roadmaps each with m samples in Cmfree have been

constructed. The outline of the probabilistic complete-

ness proof is as follows: First we assume that an H-path

Πbm from qs to qg exists - recall that an H-path con-

sists of a sequence of sub-paths where the base moves

with fixed manipulator configuration (base path seg-

ments), followed by a reconfiguration step where base

is fixed but manipulator moves to a different configura-

tion (re-configuration path). We then tile the base path

as well as all the manipulator paths with a set of care-

fully chosen balls such that generating a sample in each

ball ensures that these samples can be connected with

appropriate collision-free edges and hence a collision-

free H-path, Π̂bm between qs and qg will be found by

HAMP and the probability of generating such samples

approaches 1 with increasing m and n.

Assume an H-path Πbm from qs to qg with k (finite

but can be arbitrarily large) manipulator reconfigura-

tion steps exists - the path is composed of k base path

segments as shown in Fig 4. For each base path segment

πbi , the mobile manipulator moves with a fixed manipu-

lator configuration; at the end of the segment, denoted

by base pose qbri , a manipulator reconfiguration step is

executed (with base stationary), and the mobile ma-

nipulator now moves along the next base path segment

πbi+1 with the new fixed manipulator configuration. Let

Qb = {qbri} denote the set of base poses along πb at

which reconfiguration steps take place. Let the length

of the entire base path be Lb and the length of manip-

ulator path for ith reconfiguration step be Lmri . Lastly,

let db, dm denote the dimensions of Cb and Cm, respec-

tively.

We now define three clearances. The clearance of

πbi , denoted ρi = clr(πbi ), is the farthest distance (in

Cb) away from the path segment at which a given base

pose with manipulator in the fixed configuration (pro-

vided by Πbm) can be guaranteed to be collision-free.

If πbi lies in Cbfree , then clr(πbi ) > 0. Let ρb = clr(πb) =

mini(ρi) be the clearance along the entire base path

πb. The clearance of the base pose qbri ∈ Qb, denoted

  

ρ1=clr (π1
b)

ρ2=clr (π2
b)

ρ3=clr (π3
b)

ρk=clr (πk
b)
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2
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Fig. 4 A schematic illustrating a known mobile manipulator
path and the tiling with carefully chosen balls. (a) clearance is
not uniform through out the base path and for all the manip-
ulator paths, for e.g., for a clearance of ρi the corresponding
base path segment is tiled with balls each of radius ρi

2
; (b)

clearance is the minimum of all balls in (a), we tile the base
path πb with balls each of radius ρb

2
, base poses qbri ∈ Qb

with balls of radius ρr
2

, and the manipulator reconfiguration
paths with balls of radius ρm

2
.

ρri = clr(qbri), is the farthest distance (in Cb) from qbri
at which the manipulator reconfiguration path (pro-

vided by Πbm) can be executed collision-free. Again, let

ρr = mini(ρri). The clearance of a manipulator path

corresponding to a base pose qbri (tiled with a ball of

radius
ρri
2 ), denoted ρmi , is defined (in Cm) as the min-

imum of all the clearances that can be obtained for a

manipulator path corresponding to any sampled base

pose from the ball. Let ρm = mini(ρmi).

The measure µ denotes the volume of a region of

space, e.g., µ(Bε(x)) measures the volume of an open

ball Bε(x) of radius ε centered at x. If A ⊂ Cbfree is a

measurable subset and x is a random point chosen from

Cbfree by sampling strategy of standard PRM, then

Pr(x ∈ A) =
µ(A)

µ(Cbfree)
(2)

We now tile the base path πb with balls each of

radius ρb
2 , base poses qbri ∈ Qb with balls of radius

ρr
2 (green circles), and the manipulator reconfiguration

paths with balls of radius ρm
2 as shown in Fig 4 (b). Let

pb = d 2L
b

ρb
e and observe that there are pb points (centers

of balls) on the path πb such that distb(qbi , q
b
i+1) < ρb,

where distb is a Euclidean metric on IRdb . Out of these

pb points, there are k points (Qb) where a manipulator

reconfiguration step is needed. Let ¬Qb denote the set

of remaining (pb−k) points along πb. Let yi ∈ Bρb/2(qbi )

and yi+1 ∈ Bρb/2(qbi+1). Then the line segment yiyi+1

must lie inside Cbfree since both endpoints lie in the ball
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qi
b

qi+1
b

ρb

2
ρb

2

ρb

πb

y i

y i+1

Fig. 5 A closer look at base path tiling with balls of radius
ρb
2

. Points yi and yi+1 are inside the balls and therefore, the
line segment yiyi+1 must lie inside Cbfree since both end-

points lie in the ball Bρb(q
b
i ).

Bρb(q
b
i ) as shown in Fig 5. Let pmri = d 2L

m
ri

ρm
e and observe

that there are pmri points on the ith manipulator recon-

figuration path such that distm(qmi , q
m
i+1) < ρm, where

distm is a Euclidean metric on IRdm .

Let V b ⊂ Cbfree be a set of n base poses generated

uniformly at random by HAMP for the construction

of base roadmap. Similarly, V mri ⊂ Cmfree be a set of

m manipulator configurations generated uniformly at

random by HAMP for the construction of ith manip-

ulator roadmap. If the following conditions hold then

an H-path from qs to qg will be found: (a) each ball

along the base path πb corresponding to qbi ∈ ¬Qb gets

atleast one sample, i.e., there is a subset {yi} ⊂ V b of

(pb − k) base poses such that yi ∈ Bρb/2(qbi ); (b) re-

maining balls along πb corresponding to qbri ∈ Qb get

atleast one sample each, i.e., subset {y′i} ⊂ V b of k base

poses such that y′i ∈ Bρr/2(qbri); (c) for all the manipu-

lator paths, the corresponding balls also get atleast one

sample each, i.e., there is a subset {yri } ⊂ V mri of pmri
manipulator configurations such that yri ∈ Bρm/2(qmi ).

As mentioned earlier, these conditions ensure at least

one sample in each ball such that these samples can

be connected with appropriate collision-free edges and

hence a collision-free H-path will be found by HAMP.

To formalize it mathematically, let I1, ..., Ipb be a

set of indicator variables such that each Ij (exclud-

ing those k indicators where manipulator reconfigu-

ration is needed) witness the event that there is a

y ∈ V b and y ∈ Bρb/2(qbi ) while remaining k indica-

tor variables witness the event that there is a y′ ∈ V b
and y′ ∈ Bρr/2(qbri). Let Ir1 , ..., Irk be a set of indi-

cator variables such that each Iri witness the event

that all balls along the ith manipulator reconfigura-

tion path get at least one sample each. Let Im1 , ..., I
m
pmri

be a set of indicator variables for each Iri such that

  
Base Motion

A
rm

 M
ot

io
n

qs

Cbmfree

(qi
b , qi

m)

(q j
b , q j

m)

(q j
b , qi

m)

π j
m

H-path

ϵ

qg

Fig. 6 This figure shows that any path in Cbmfree
(assum-

ing it is an open set) connecting the start (qs) and the goal
(qg) configurations can be approximated by an H-path, also
lying in Cbmfree

. The black curve denotes an arbitrary path
that lies in Cbmfree

. Let ε be minimum clearance (from C-
obstacles) along the path (it must exist since Cbmfree

is open).
The path is then tiled with balls of radius ε. The H-path ap-
proximation is shown in red and by construction, it is guar-
anteed to be collision-free.

Iri = Im1 ∧ Im2 ∧, .....,∧Impmri and each Imt witness the

event that there is a yr ∈ V mri and yr ∈ Bρm/2(qmi ).

It follows that HAMP succeeds in answering the query

(qs, qg) if Ij = 1 for all 1 ≤ j ≤ pb and Iri = 1 for

all 1 ≤ i ≤ k. If at least one of the indicator vari-

ables (Ij , Iri) is 0 then HAMP would fail. Therefore, the

probability of failure (Equation 1) then can be written

as

Pr[(qs, qg)FAILURE] ≤ Pr((
pb∨
j=1

Ij = 0)∨(

k∨
i=1

Iri = 0))

(3)

≤
pb∑
j=1

Pr[Ij = 0] +

k∑
i=1

Pr[Iri = 0] (4)

where the last inequality follows from the union bound.

We further breakdown the first term into two com-

ponents: (i) (pb − k) balls along πb where manipula-

tor reconfiguration is not needed, and (ii) remaining k

balls each with a radius of ρr
2 where reconfiguration is

needed. Therefore, RHS of last inequality (Equation 4)

can be written as

≤
∑
j∈¬Qb

Pr[Ij = 0] +
∑
j∈Qb

Pr[Ij = 0] +

k∑
i=1

Pr[Iri = 0]

(5)

The probability of a given Ij = 0 is computed by ob-

serving that none of the n randomly generated indepen-
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dent samples falls in Bρb/2(qbj), therefore for j ∈ ¬Qb,

Pr[Ij = 0] =

(
1−

µ(Bρb/2(qbj))

µ(Cbfree)

)n
(6)

However,

µ(Bρb/2(·))
µ(Cbfree)

=
(ρb2 )dbµ(B1(·))
µ(Cbfree)

= σ1ρ
db
b (7)

where B1(·) is the unit ball in IRdb and σ1 =

µ(B1(·))/2dbµ(Cbfree). Hence RHS of Equation 5 be-

comes

≤ (pb−k)(1−σ1ρdbb )n+k(1−σ1ρdbr )n+

k∑
i=1

Pr[Iri = 0]

(8)

Iri = 0 only if ∨
pmri
t=1I

m
t = 0. Therefore, Pr[Iri = 0] is

Pr[Iri = 0] ≤ Pr[
pmri∨
t=1

Imt = 0] ≤
pmri∑
t=1

Pr[Imt = 0] (9)

pmri∑
t=1

Pr[Imt = 0] ≤ pmri

(
1−

µ(Bρm/2(qmi ))

µ(Cmfree)

)m
(10)

The RHS of last inequality (Equation 8) can now be

written as

≤ (pb−k)(1−σ1ρdbb )n+k(1−σ1ρdbr )n+

k∑
i=1

pmri (1−σ2ρ
dm
m )m

(11)

where σ2 = µ(B2(·))/2dmµ(Cmfree) and B2(·) is the

unit ball in IRdm . Using the relation (1 − β)n ≤ e−βn

for 0 ≤ β ≤ 1, the above inequality then finally can be

written as

≤ c1e−σ1ρ
db
b n + c2e

−σ1ρ
db
r n + c3e

−σ2ρ
dm
m m (12)

where c1 = (pb − k), c2 = k, and c3 =
∑k
i=1 p

m
ri .

The expression above converges exponentially to 0 as

n → ∞ and m → ∞, hence showing the complete-

ness of the HAMP algorithm with respect to a class of

paths, i.e., H-path. However, given any arbitrary path

in open Cbmfree , we can always create an H-path that

lies in open Cbmfree as shown in Fig 6. Hence HAMP is

probabilistically complete.

Algorithm 5: Πbm = HAMP-U(qs, qg, q
m
H )

Input: The start qs = ((µs, Σs), qms ) = (qbs, q
m
s ) and

goal qg = ((µg,−), qmg ) = (qbg, q
m
g )

configurations, 3D Map and qmH
Output: Path Πbm from qs to qg with low goal

covariance Σg
Roadmap Gbbelief := CONSTBELIEFROADMAP(qmH )1

Append Gbbelief with nodes {ns :=(µs, qmH ),2

ng :=(µg, qmH )}, edges {{es,j}, {ei,g}}, and one
descriptor matrices {{S1:Ts,j}, {S1:Ti,g}}
Augment node structure with best path p := ∅,3

covariance Σ := ∅, RPATHS
[nadj ] = ∅ such that

ni := {(µ,Σ), qmH , p, RPATHS
[·]}

Q← ns := {(µs, Σs), qms , ∅, ∅}4

while Q 6= ∅ do5

n :=POP(Q)6

if n[qb] = ng[qb] then7

Continue8

end9

for all n′ of adj[n] and n′ /∈ n[p] do10

Compute one-step update Ψ ′ = Ψ ? S1:Tn,n′11

where Ψ =

[
I n[Σ]
0 I

]
Σ′ ← Ψ ′1212

if tr(Σ′) < tr(n′[Σ]) or tr(n′[Σ]) = φ then13

(qmnew, π
m
n ) :=SEARCHMANIPPATH(n, n′)14

if πmn 6= ∅ then15

n[RPATHS
[n′]] := πmn16

n′ := {(−, Σ′), qmnew, n[p] ∪ {n′},−}17

Q← Q ∪ {n′}18

end19

end20

end21

end22

πmng=SEARCHMANIPPATHATBASEGOAL(q̂mg , q
m
g )23

Πbm ← traceback using ng[p] and ni[RPATHS
[nadj ]]24

such that ni, nadj ∈ ng[p]
return Πbm25

6 The HAMP-U algorithm

Now we extend our HAMP algorithm to account for lo-

calization uncertainty associated with the mobile base

pose. With the motion and sensor uncertainty, the state

of mobile base is not precisely known and is represented

by Gaussian belief. We assume that the motion of ma-

nipulator is quite accurate (a reasonable assumption,

give the joint encoders are quite precise). The objective

of HAMP-U is to find a collision-free path with low be-

lief covariance at the goal. Like HAMP, the HAMP-U

algorithm is a two stage process described in Algorithm

5. For brevity, we omit the expand roadmap portion in

our pseudo code.

In the first stage (Line 1 of Algorithm 5), we first

create a belief roadmap (instead of the standard prob-

abilistic roadmap in the base pose space for the basic

HAMP) for the mobile base with manipulator remain-
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Algorithm 6: Gbbelief =CONSTBELIEFROADMAP(qmH )

Input: qmH
Output: Belief roadmap Gbbelief
Sample mean poses {µi} from Cbfree using a standard1

PRM sampling strategy to build roadmap node set
{ni} such that ni = qi = (µi, qmH ) = (qbi , q

m
H )

Create edge set {eij} between nodes (ni, nj) if2

COLLISIONFREE(ni, nj)
Build one descriptor matrices {S1:T }∀eij ∈ {eij}3

return Gbbelief = {{ni}, {eij}, {S1:Tij}}4

ing in a fixed home configuration. The belief roadmap

formation is explained in Algorithm 6. A naive ap-

proach to build the belief roadmap is to sample beliefs

directly from belief space (µ,Σ). However, the biggest

challenge is to ensure that the nodes are reachable.

Therefore, the planner first samples a set of mean poses

{µi} from Cbfree using the standard sampling step in

PRM algorithm (Kavraki et al, 1996). In our case, a

sample mean pose is collision-free if mobile manipula-

tor with mobile base positioned at µi and manipulator

in home configuration qmH is collision-free. We add an

edge eij between pairs (µi, µj) if a sequence of controls

exists to move the mobile manipulator without colli-

sions along the straight line between poses. We then

simulate a sequence of controls and measurements along

each edge. To achieve this, a motion model of the mo-

bile base and a sensor model of the sensor is needed. We

omit the precise details since they are standard imple-

mentation of extended Kalman filter (EKF). Our nota-

tion follows that of Prentice and Roy (2009). The effect

of these models are essentially given by matrices Gt, Vt,

Ht, the Jacobians corresponding to the motion model

(w.r.t state variable and w.r.t control variable) and the

sensor model (w.r.t state variable); and matrices Wt,

Qt, the noise covariance matrices for motion and sens-

ing, respectively. The matrices Gt, Rt = VtWtV
T
t and

Mt = HT
t Q
−1
t Ht, for each step along the edge eij are

computed. BRM uses maximum likelihood observations

and a covariance factorization to combine multiple up-

dates along an edge en,n′ into a single transfer function,

represented by a descriptor matrix S1:Tn,n′ . The matrix

encodes the uncertainty along the edge.

The second stage (Lines 2-24 of Algorithm 5) is a

search mechanism that searches the belief roadmap us-

ing a variant of standard breadth first search algorithm

and SEARCHMANIPPATH() routine in an intertwined man-

ner, similar to HAMP except that the metric used is

uncertainty along the path rather than the length of

path. The search process uses a queue function for the

expansion of (µ,Σ) nodes in a first-in, first-out order.

Line 10 prevents cycling problems, where an adjacent

node n′ is only considered if it is not already in the

mobile base path n[p]. Note that, in Lines 13-20, we

only expand nodes if search algorithm has found a new

posterior covariance Σ′ such that some measure of un-

certainty (we use the trace) for it is less than that for

existing posterior covariance n′[Σ] and there is a path

for the mobile manipulator along an edge en,n′ . It is

also assumed that a node n′ replaces any current queue

member n′ when pushed onto the queue in line 18.

7 Results

We performed a series of simulations and real experi-

ments on the SFU mobile manipulator roaming around

in our lab to evaluate HAMP and HAMP-U. Our eval-

uation consisted of two main objectives: (a) to demon-

strate the usefulness of the hierarchical search (HAMP)

and its comparison with a full 9D PRM based on a set

of performance criteria; (b) to show that by taking into

account the uncertainty in the planning process, i.e.,

using HAMP-U, the paths generated are less likely to

result in collision as compared to the basic HAMP.

The SFU mobile manipulator consists of a power-

bot mobile base with a 6DOF Schunk powercube arm

mounted on it. The world representation is computed

offline by manually moving the robot around and using

the two on-board sensors, an LMS100, a planar laser

rangefinder that provides a 240◦ field-of-view at 30 Hz

and an effective range of 18m; and a Kinect that pro-

vides 3D range data at 30 Hz and an effective range

of 0.7-6m. In simulations also, we used the same mo-

bile manipulator model with the corresponding sensors.

As we constructed the maps (2D and 3D) by manually

moving the robot, hence their is uncertainty in the map-

ping. We run our tests under linux (Ubuntu 10.10) on

a Pentium dual core 2.5 Ghz computer with 4GB mem-

ory. We made use of portions of publicly available ROS

(Quigley et al, 2009) and OMPL (Şucan et al, 2012)

code as needed for implementation of our HAMP and

HAMP-U algorithms.

7.1 World representation and collision checks

We use two types of map representation for colli-

sion check for efficiency reasons: a 2D costmap (in-

flates costs based on 2D occupancy grid and user

specified inflation radius) and a 3D collision map (a

set of occupied voxels) derived from an incremen-

tally built global octree (Hornung et al, 2013). For

efficiency reasons, collision detection for the whole

mobile manipulator is accomplished in a two-stage

process as follows. During initial construction of the

roadmap (in routines CONSTRUCTBASEROADMAP() as well
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Fig. 7 Simulation environments for scenarios C, D & E: (a) in this simulation the task is to pass a stick of 50 cm through
a window of size 40cm×50cm, this figure shows the mobile manipulator with stick in start and goal configurations; (b) the
mobile manipulator needs to navigate through 5 cuboid obstacles to reach the goal; (c) shows a narrow corridor (overhead
view) of width 80cm with a tight round turn; the manipulator is required to move in the narrow corridor and negotiate the
turn while carrying a 100 cm long stick.

Table 1 Experimental results in 5 scenarios for mobile manipulator planning (HAMP vs. FULL 9D PRM).

Permitted Planner # Base Nodes Total Arm Nodes Time (s) # Coll. Checks #Reconfig B. Path #Succ.
Time (s) mean s. d. mean s. d. mean s. d. mean s. d. /#Armchks. Len. (m) /#Runs

A 40 HAMP 87 108 63 104 5.7 6.1 23k 25k 4/95 4.5 30/30
PRM 489 326 N/A N/A 12.5 10.7 80k 52k N/A 6.1 24/30

B 40 HAMP 115 152 180 269 12.9 11.2 39k 36k 6/116 4.6 29/30
PRM 823 267 N/A N/A 19.5 14.0 130k 41k N/A 7.8 7/30

C 120 HAMP 2 1 1958 920 36.9 19.4 173k 81k 1/1 0.8 30/30
PRM 1638 265 N/A N/A 84.2 21.3 297k 97k N/A 4.9 12/30

D 70 HAMP 29 10 736 796 27.8 14.6 114k 76k 15/34 3.2 28/30
PRM 945 491 N/A N/A 38.2 18.2 192k 82k N/A 4.3 21/30

E 300 HAMP 96 76 2897 1874 77.8 42.5 205k 134k 80/278 3.0 29/30
PRM 10154 2469 N/A N/A 193.5 48.9 786k 187k N/A 4.7 23/30

as CONSTBELIEFROADMAP()), the 2D projected footprint

of the base is checked against the 2D costmap, and

if it is collision-free then a 3D collision check is per-

formed on the manipulator. We use height threshold

to project 3D range data (from Kinect) to get a 2D

costmap. During search (routines COMPUTEARMGOALS()

and SEARCHMANIPPATH()), since the path is already

collison-free with respect to the base and home configu-

ration of the arm, only 3D collision checks are done for

the arm. This strategy helps us to avoid unnecessary

3D collision checks (which can be expensive) without

being overtly conservative.

7.2 Simulation results for HAMP

We ran HAMP and a full 9D PRM on 5 different sce-

narios with varying levels of complexity in simulation

and compared the outcomes. We used OMPL (Şucan

et al, 2012) to implement full 9D PRM in an incre-

mental way (single-query) along with random-bounce

walk expansion strategy (Kavraki et al, 1996) to con-

nect narrow passages. The key parameters we used in

HAMP are as follows: KGoals = 3, ARMGOALSTIMEUP =

2 seconds, and ARMPLANNINGTIMEUP = 6 seconds. For

HAMP and full 9D PRM, we used 5 nearest neighbours

to connect the new sample to the neighbouring nodes.

Simulation environment corresponding to scenarios A

and B is shown in Fig 1, while for scenarios C, D and E,

the corresponding simulation environments are shown

in Fig 7. The mobile manipulator with arm in vertically

extended configuration was required to navigate from

one side of the door to the other side. In A, the ma-

nipulator has no payload, whereas in B, we increased

the complexity by adding a payload - a stick of 50cm

length to the manipulator. In C, the task required pass-

ing a 50 cm long stick through a window of 40cm×50cm,

while in D, the mobile manipulator needed to navigate

through five cuboid obstacles in order to reach the goal.

In scenario E, the mobile manipulator carrying a stick

of 100 cm, enters from an open area into a very narrow

corridor of width 80cm, navigates through the corridor

and makes a turn through a very tight round corner and

then finally exits into an open area, requiring frequent

reconfiguration steps along the way.

Figures 8, 9 and 10 show snapshots of the simu-

lation tests for scenarios B, C and D, respectively. In

simulation tests corresponding to Fig 8 and Fig 10, the

manipulator changes its configuration 3 times along the

path and 1 time at the goal, while in Fig 9, the ma-

nipulator changes its configuration only at the goal.
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Fig. 8 HAMP simulation test for scenario B: This simulation shows the mobile manipulator carrying a 50 cm stick as payload
and navigating from one side of the door to the other side. The corresponding base roadmap and base path (blue color) of
H-path are shown as well. (a) mobile manipulator’s start configuration; (b), (c), (d) show a sequence of snapshots of mobile
manipulator motions along the path with the same arm configuration; (e), (f) show the first reconfiguration step, in order to
move along the path, arm configuration needs to be changed, as mobile manipulator can not cross the doorway due to arm
and long payload collision with gate; (g), (h) show the second arm reconfiguration step; (i) the mobile manipulator advances
along the path with arm in final configuration of the last reconfiguration step; (j), (k) show the third reconfiguration step; (l)
mobile base has reached the goal but not the arm, this snapshot shows the mobile manipulator before the final reconfiguration
step at goal.
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Fig. 9 HAMP simulation test for scenario C: This simulation shows the mobile manipulator passing a 50 cm stick through a
window of 40cm×50cm (a) mobile manipulator’s start configuration, here the arm is in compact state (folded) and the payload
is held parallel along the side of the robot; (b), (c) mobile manipulator with the same arm configuration; (d), (e), (f), (g), (h),
(i), (j), (k) show snapshots for arm reconfiguration step at goal, (l) shows the mobile manipulator in goal configuration.
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Fig. 10 HAMP simulation test for scenario D: This simulation shows the mobile manipulator navigating through 5 randomly
placed cuboid obstacles (a) mobile manipulator’s start configuration, here the arm is in vertically extended configuration; (b),
(c) show the first reconfiguration step; (d), (e), (f), (g) mobile manipulator advances with the same arm configuration; (h),
(i) show the second reconfiguration step; (j), (k) mobile manipulator advances with the same arm configuration; (l), (m) show
the third reconfiguration step, (n) mobile base has reached the goal but not the arm, (o) shows the mobile manipulator’s goal
configuration, after the final reconfiguration step.
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Videos corresponding to the simulation tests for scenar-

ios A to E are available online at http://www.sfu.ca/

~vpilania/research.html and also attached to this

paper (Online Resources 1 to 4).

We compared HAMP and full 9D PRM on the basis

of three criteria: (a) planner run time, (b) percentage

of successful attempts, (c) base path length, and the

results are presented in Table 1. We observe from the

table that for each of the scenarios A to E, full 9D PRM

is outperformed by HAMP. HAMP solved the problems

in less time (and less number of collision checks) with

a higher success rate and shorter base path lengths as

compared to full 9D PRM paths.

HAMP’s failures for the scenarios B, D, E are of

Type 2. In this case, the base roadmap gets denser

and denser in an attempt to connect the narrow re-

gions, and hence requires large number of calls to

SEARCHMANIPPATH(). These failures happened because

permitted time was over before the completion of calls

to SEARCHMANIPPATH() for all the edges in the base

roadmap. In E, sometimes (11 out of 30 runs) HAMP

failed to find an H-path in the first iteration (lines 1-

25, Algorithm 1) even though the start and goal base

poses were in the same connected component of the

base roadmap. This is mainly because of the failure

of manipulator planning (Type 2 and 3 failures). In

that case, HAMP expands the base roadmap by adding

more samples (lines 26-31, Algorithm 1) and success-

fully found the path in the subsequent iterations. On

average, HAMP took 3 “expand roadmap” iterations

to find a path for scenario E. In practice, it also attests

to probabilistic completeness of HAMP, i.e., if it can not

find a path in the first iteration then it adds more sam-

ples and repeats the search mechanism until a path is

find or the permitted time to solve the problem is over.

In addition, it is noteworthy that manipulator recon-

figuration (“#Reconfig”) is needed rather infrequently

as compared to the number of times manipulator con-

figurations were checked for collisions (“#Armchks”)

along the edges in the base roadmap as illustrated in

the column “#Reconfig/#Armchks” in Table 1. This

supports our claim that HAMP moves the manipulator

on a “need to” basis. Indeed the ratio is higher for more

cluttered scenarios, but even for E, it is less than 30%

(80/278).

Lastly, we illustrate the undesired motion of the arm

in full 9D PRM vis a vis HAMP via a graphical repre-

sentation, as shown in Fig 11, It shows a typical manip-

ulator motion for HAMP and for full 9D PRM for sce-

narios B and E. Note that these motions were generated

after a postprocessing step (path shortening) (Choset

et al, 2005) . The figure shows the manipulator motion

essentially as a histogram (red vertical lines) along the

Fig. 11 This figure shows a comparison of manipulator mo-
tion (the height of red lines corresponds to the length of arm
motion (in Cm)) along the base path (blue line) between full
9D PRM (left) and HAMP (right) for scenarios B (top) and
E (bottom). Please see text for explanation.

base path, shown in blue. For full 9D PRM (left figures),

the height of each red line denotes the length of arm

motion (in Cm) between two consecutive poses along

the discretized base path. For HAMP, the manipulator

motion takes place at fixed base configurations, hence

the length is zero except at some base poses, where the

height of red line denotes the length of the manipulator

re-configuration path (right figures). It clearly supports

our claim that HAMP avoids undesired arm motions as

the base moves along a path which is not the case with

full 9D PRM.

7.3 Simulation results for tree versions of HAMP

We also evaluated the tree versions of HAMP with

RRT and Bi-directional RRT (BiRRT) as the core sub-

planners for searching for both the base and the ma-

nipulator, respectively called HAMP-RRT and HAMP-

BiRRT. In tree versions, it is not necessary to construct

the entire tree first, hence stage 1 and 2 are essentially

merged, i.e., for every new potential node to be added to

the tree, SEARCHMANIPPATH() is invoked from the nearest

node. If it returns success then the new node is added

to the tree along with corresponding updates at that

node, else the node is rejected.

We compared HAMP-RRT with full 9D RRT and

HAMP-BiRRT with full 9D BiRRT for scenarios A to

E (as mentioned in Sec 7.2) and the corresponding re-

sults are presented in Tables 2 and 3. From the ta-

bles, we observe that for each of the scenarios A to

E, full 9D RRT and full 9D BiRRT are outperformed
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Table 2 Experimental results in 5 scenarios for mobile manipulator planning (HAMP-RRT vs. FULL 9D RRT).

Permitted Planner # Base Nodes Total Arm Nodes Time (s) # Coll. Checks #Reconfig B. Path #Succ.
Time (s) mean s. d. mean s. d. mean s. d. mean s. d. /#Armchks. Len. (m) /#Runs

A 40 HAMP-RRT 33 12 477 484 3.1 2.6 18k 15k 3/32 4.3 30/30
RRT 1677 1379 N/A N/A 7.7 6.9 45k 16k N/A 5.9 30/30

B 40 HAMP-RRT 34 28 771 730 5.7 4.1 31k 21k 5/33 4.5 30/30
RRT 2511 1208 N/A N/A 13.8 7.3 68k 37k N/A 6.5 30/30

C 120 HAMP-RRT 13 4 4338 2675 16.4 7.2 92k 43k 4/13 1.1 30/30
RRT 5924 634 N/A N/A 52.6 8.7 233k 56k N/A 4.6 8/30

D 70 HAMP-RRT 27 13 989 778 9.0 4.3 53k 36k 12/26 3.2 30/30
RRT 3218 756 N/A N/A 18.2 8.1 96k 41k N/A 4.2 30/30

E 300 HAMP-RRT 36 25 1379 1097 6.5 5.0 44k 33k 10/35 3.0 30/30
RRT 3814 1097 N/A N/A 23.4 9.3 127k 36k N/A 4.7 30/30

Table 3 Experimental results in 5 scenarios for mobile manipulator planning (HAMP-BiRRT vs. FULL 9D BiRRT).

Permitted Planner # Base Nodes Total Arm Nodes Time (s) # Coll. Checks #Reconfig B. Path #Succ.
Time (s) mean s. d. mean s. d. mean s. d. mean s. d. /#Armchks. Len. (m) /#Runs

A 40 HAMP-BiRRT 21 11 309 336 2.4 1.2 15k 6k 2/20 4.4 30/30
BiRRT 602 244 N/A N/A 2.6 1.3 17k 7k N/A 5.9 30/30

B 40 HAMP-BiRRT 23 19 663 528 4.5 2.7 24k 11k 4/23 4.5 30/30
BiRRT 1447 591 N/A N/A 8.1 3.4 42k 17k N/A 6.6 30/30

C 120 HAMP-BiRRT 5 3 739 156 1.8 1.1 11k 5k 2/5 1.0 30/30
BiRRT 346 185 N/A N/A 2.2 1.1 13k 7k N/A 4.6 30/30

D 70 HAMP-BiRRT 19 16 617 499 5.9 1.8 39k 12k 7/19 3.3 30/30
BiRRT 1083 369 N/A N/A 6.1 2.1 40k 22k N/A 4.3 30/30

E 300 HAMP-BiRRT 30 23 1235 756 6.2 4.4 41k 27k 9/33 3.0 30/30
BiRRT 1371 481 N/A N/A 6.6 2.5 50k 38k N/A 4.2 30/30

Table 4 Results for HAMP vs. HAMP-U (30 Runs).

% times a given path results in coll.
HAMP HAMP-U

A 16.6 % 3.3 %
B 46.6 % 10.0 %
C 63.3 % 50.0 %
D 56.6 % 16.6 %
E 73.3 % 43.3 %
F 33.3 % 6.6 %

by the corresponding tree versions of HAMP. Although

the planning time difference is not that significant be-

tween HAMP-BiRRT and full 9D BiRRT. Similar to full

9D PRM, the computed path for the mobile manipu-

lator using full 9D RRT or full 9D BiRRT also result

into undesired and excessive motions for the manipu-

lator even after applying a post processing smoothing

filter. It is also important to note that as compared to

HAMP, HAMP-RRT takes less time to plan a path and

the planning time is further reduced in HAMP-BiRRT.

This also holds true in case of full 9D PRM, full 9D

RRT and full 9D BiRRT. In scenario C, full 9D RRT

was only able to find a path in 8 trials out of 30. This is

because there the goal was located in a very narrow re-

gion. In such cases BiRRT helps to find a path quickly

as evident from the Table 3. Clearly, for the case with

no uncertainty, HAMP-BiRRT is the planner of choice,

because not only it is fast, it also avoids unnecessary

motions of the arm.

However, for planning with uncertainty, tree ver-

sions of HAMP are not suitable, because there is no

optimization possible with respect to uncertainty (note

that RRT gives a unique path). One could get mul-

tiple paths via multiple runs of HAMP-RRT, however,

this is likely to be computationally more expensive than

the PRM version of HAMP (van den Berg et al, 2011).

HAMP-BiRRT is, of course, not applicable because the

uncertainty at the goal is not known in advance (it in

fact depends on the path taken to the goal), hence one

can not grow a tree from the goal, as needed in HAMP-

BiRRT.

7.4 Simulation results for HAMP-U

We tested HAMP-U on 6 different scenarios in simu-

lation and compared the outcomes with HAMP. Our

main objective is to show that as a result of embedding

BRM in our mobile manipulator planner (HAMP), the

paths generated by HAMP-U are less likely to result

in collision and are safer to execute as compared to

HAMP. Scenarios A to E are same as explained in Sec

7.2, the only difference is instead of 50 cm stick we used

120 cm stick for scenario B. Fig 12 shows a sequence of

snapshots for one of the simulation tests for scenario B,

where the mobile manipulator needed to navigate with

a stick of 120 cm. It shows that even with arm folded in

most compact state (home configuration) at the start

with the payload held parallel to the side of the base,

the arm configuration still needs to be changed in order

to reach the goal (as shown in Fig 12 (c), the mobile ma-

nipulator can not make a turn due to long payload colli-

sion with the wall or the gate). In scenario F, the mobile

manipulator needed to navigate through 3 doorways

of varying heights and widths to reach the goal. The

corresponding simulation videos are available online at

http://www.sfu.ca/~vpilania/research.html

A comparison between HAMP and HAMP-U for

scenarios A to F is presented in Table 4. We generated
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Fig. 12 HAMP-U simulation test for scenario B: The mobile manipulator carrying a 120 cm stick as payload. This simulation
shows that even if you put the arm in compact state (folded), the arm configuration may still need to be changed in order to
reach the goal (a) mobile manipulator’s start configuration, here the arm is in compact state (folded) and the payload is held
parallel along the side of the robot, (b) mobile manipulator with the same arm configuration, (c) in order to move along the
path, arm configuration needs to be changed, as mobile manipulator can not make a turn due to long payload collision with
wall or gate; (d), (e), (f), (g) show the reconfiguration step, (h) mobile base has reached the goal but not the arm, (i) shows
the mobile manipulator’s goal configuration, after the final reconfiguration step.

30 successful runs with HAMP and HAMP-U. Each

path is then executed in simulation with artificially gen-

erated process and measurement noise, and the num-

ber of executions resulted in collision were counted.

The percentage times a path generated by HAMP or

HAMP-U results in collision with the obstacles upon

execution is given in Table 4. We can see that the paths

generated by HAMP-U are less likely to result in colli-

sion as compared to HAMP (which does not take into

account the uncertainties). However, in HAMP-U for

scenarios C and E, the collisions are still significant.

This is mainly because the corresponding environments

are more cluttered, hence, even a minor deviation of the

base pose from the planned one leads to collisions. As

mentioned in the future work (Sec 8), these collisions

in HAMP-U can be mitigated by incorporating the ef-

fects of base uncertainty (for instance by explicitly us-

ing collision probabilities) on the planned manipulator

motions.

7.5 Experiments on SFU mobile manipulator

Figures 13 and 14 show the 3D map of our lab formed by

pre-sensing the environment with kinect and snapshots

of one of the several experiments performed with the

SFU mobile manipulator in our lab. The same exam-

ple is shown in the experimental video attached to the

paper (Online Resource 5) and also available online at

http://www.sfu.ca/~vpilania/research.html. Our

experimental set-up consists of two gates, 2nd gate is

just 10 cm above the minimum height that can be at-
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Fig. 13 The 3D world (collision map) is formed by pre-
sensing the environment with kinect and is shown in green
above. The experimental set-up consists of two gates of dif-
ferent height.

tained by the manipulator. We used the extended arm

configuration as initial configuration to illustrate the

reconfiguration step. The planner runtime for the ex-

periment, for which selected screenshots are shown in

Fig 14 is 5 seconds. We carried out 18 experiments on

SFU mobile manipulator with the experimental setup,

the minimum and maximum planner runtime was noted

to be 2.43 seconds and 7.8 seconds, respectively. In real

experiments, for now, we are not able to demonstrate

the pole example due to lack of gripper in SFU mobile

manipulator.

Fig. 14 Experiment on the real mobile manipulator. Photos
are arranged from left to right in each row and then top to
bottom. The mobile manipulator moves through two gates of
varying heights and the manipulator reconfigures to a new
configuration before crossing each gate.

8 Conclusion and future work

We presented a hierarchical and adaptive mobile ma-

nipulator planner (HAMP) which searches in two sub-

spaces, the base sub-space and the manipulator sub-

space, in a novel way and on a “need to” basis, i.e.,

the search in manipulator space is invoked only for

those points in the base-space where it is needed. We

proved that HAMP is probabilistically complete. We

implemented HAMP for a 9 DOF mobile manipulator

and showed that it can find a path in environments

where conservative approaches will fail since manipu-

lator configuration needs to be changed several times

while navigating from start to goal. We also compared

HAMP with full 9D PRM and observed that HAMP

takes less time to compute the paths with a higher suc-

cess rate. In addition, the base path length correspond-

ing to the H-path given by HAMP is significantly less

than the length of base path given by the full 9D PRM.

HAMP also avoids the undesired arm motions as the

base moves along a path. Additionally, we evaluated

the tree versions of HAMP as well (i.e., HAMP-RRT

and HAMP-BiRRT) by comparing them with full 9D

RRT and full 9D BiRRT and observed the similar per-

formance although the time saving for HAMP-BiRRT

is modest as compared to full 9D BiRRT.

We then presented an extension to HAMP (HAMP-

U) to account for localization uncertainty associated

with the mobile base position. We showed that by in-

corporating base pose uncertainty within our overall

HAMP algorithm, the paths generated by HAMP-U are

less likely to result in collision and are safer to execute.

In the current implementation, the low base uncertainty

due to belief space roadmap indeed makes mobile ma-

nipulator motion plans safer than otherwise, however,

the base uncertainty is not incorporated in the manip-

ulator motion plans.

We would like to extend our work in two ways. The

first is to extend it to an incremental version where

rather than build an off-line map of the environment,

as we do in the current implementation, the map is

incrementally built as the mobile manipulator moves

around, i.e., simultaneous planning and mapping (Yu

and Gupta, 2004; Torabi et al, 2007), by incorporating

an appropriate view planner. Second is to incorporate

the effects of base uncertainty on the manipulator mo-

tion - for example, by taking into account the collision

likelihood of such motions that is directly affected by

the base uncertainty. This was done for fixed base posi-

tion in (Huang and Gupta, 2009), and we plan to extend

it to along an entire mobile manipulator path. While we

have focussed on a specific platform, i.e., mobile manip-

ulator, where the hierarchy is defined across the base

and the manipulator, the HAMP approach can be gen-

eralized over any hierarchical abstraction over the entire

configuration space. We intend to explore this as well.
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