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Abstract— We present a Hierarchical and Adaptive Mobile
Manipulator Planner (HAMP) that plans for both the base
and the arm in a judicious manner - allowing the manipulator
to change its configuration autonomously when needed if the
current arm configuration is in collision with the environment
as the mobile manipulator moves along the planned path. This
is in contrast to current implemented approaches that are
conservative and fold the arm into a fixed home configuration.
Our planner first constructs a base roadmap and then for
each node in the roadmap it checks for collision status of
current manipulator configuration along the edges formed with
adjacent nodes, if the current manipulator configuration is
in collision, the manipulator C-space is searched for a new
reachable configuration such that it is collision-free as the
mobile manipulator moves along the edge. We show that HAMP
is probabilistically complete. We compared HAMP with full 9D
PRM and observed that HAMP outperforms the full 9D PRM
in each of the performance criteria, i.e., computational time,
percentage of successful attempts, base path length, and most
importantly, undesired motions of the arm.

I. INTRODUCTION

Autonomous Mobile Manipulation is an important prob-
lem for humanoids, particularly in service robotics applica-
tions. It includes several intertwined sub-problems including
finding suitable grasps and grasping the object [1], [2], find-
ing the best mobile base location and manipulator configura-
tion corresponding to the end effector pose [3], close-range
scene segmentation for table-top manipulation [4] with static
mobile base, and finding the mobile manipulator path from
start to goal (base poses and manipulator configurations) [5].
In this paper we focus on the last sub-problem, i.e., determine
a collision-free path for the mobile manipulator from a given
start configuration to a desired goal configuration. Most work
[5], [6], [7] usually takes a very conservative approach,
which is, to fold the arm to some safe “home” configuration
and then plan for a 2D projected footprint of the mobile
manipulator in a projected 2D representation of the world
from start base pose to goal base pose.

Clearly, this approach has two main limitations: (i) the
projection of the mobile manipulator with extended arm may
have a large footprint, and may be in collision with 2D
projected map, while the mobile manipulator is collision-free
in 3D map, and more fundamentally (ii) it may not always
possible to change the arm to a predefined home configu-
ration at base’s start pose because of physical constraints
or there may be task constraints that prevent the arm being
folded, e.g., if the robot is carrying a glass of liquid which
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Fig. 1. This example (simulation environment for scenarios A and B in
Section V) shows the mobile manipulator carrying a long payload (120 cm
long stick) and it needs to pass through a doorway to reach the goal on the
other side.

needs to be kept vertical to avoid spillage. Another example
is where the mobile manipulator is carrying a long payload,
say a pole and it needs to continuously move the arm (and
thereby the pole to avoid the pole colliding with walls and
other objects in the environment) to navigate through the
doors and hallways. In such scenarios, mobile manipulator
with arm in start configuration can not reach the goal unless
it changes the arm configuration several times along the path.
One such example is shown in Figure 1.

One possible solution to this motion planning problem is
to use sampling based planners [8], [9] in full configuration
(C-space) of the mobile manipulator. However, besides being
somewhat computationally expensive, the computed path for
the mobile manipulator may result in undesired and excessive
motions for the manipulator. This is primarily because of
the randomness associated with sampling based planners and
persists even after applying a post processing smoothing
filter. In most scenarios, there is no need to move manipulator
except at certain base poses - the undesired arm motion (post
smoothing) refers to this extraneous manipulator motion
while the base is moving. We would like to avoid such
undesired manipulator motions.

We propose a Hierarchical and Adaptive Mobile Manipu-
lator Planner (HAMP) to solve the problem and a schematic
illustrating the planned mobile manipulator path is given
in Figure 2. The HAMP algorithm is a two stage process:
in the first stage it constructs a base roadmap (using PRM
in the base configuration space) where it connects the start
and goal base poses (with manipulator remaining in a fixed
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Fig. 2. A schematic illustrating the planned mobile manipulator path Πbm

given by HAMP algorithm. Please see text for explanation.

home1 configuration). In the second stage, the algorithm
reconfigures or “adapts” the manipulator configuration to
a new configuration along the edges in the base roadmap
constructed earlier by checking for the manipulator collisions
along them from start to goal. This two stage process
iterates until a collision-free mobile manipulator path is
found or the time limit is over. The second stage works
as follows: for each node in the base roadmap, the current
manipulator configuration is checked for collisions along
the edges corresponding to the adjacent nodes. If it is
in collision along an edge in the base roadmap, then the
manipulator is reconfigured (while base is stationary at the
base node) by moving it to a new configuration such that the
new configuration is collision-free if the mobile manipulator
with manipulator in new configuration were to move along
the edge in the base roadmap. This reconfiguration step is
carried out via motion planning for the manipulator in the
manipulator’s C-space constructed at the given base node. If
no such manipulator configuration is found, then a new edge
will be searched for in the base roadmap, and the process
repeats. Figure 2 schematically illustrates HAMP algorithm.
In the figure, blue dots correspond to base pose nodes, the red
segments are the base edges, and light purple ellipses (small
and big) corresponding to each blue dot is the manipulator C-
space. Small purple ellipses with one white dot indicate that
the manipulator configuration, corresponding to the white
dot, is free along the base edge (to the next base node)
and no manipulator planning was required. Three red color
dash lines denote the physical gates (overhead view). The big
ellipses show where manipulator planning was done, with the
manipulator roadmap shown with its nodes and edges inside
each ellipse. For the first three ellipses, the manipulator
configuration at each base node just before the gate was
in collision along the edge (as the mobile manipulator
moves through the gates) and hence the roadmap was built
and searched for a path and the sequence of light green
edges shows the path. The manipulator moves along this

1Note that there are other options here, e.g., one could simply construct
the base roadmap for the base only, however, this could lead to several
nodes/edges being invalidated in the subsequent stage.

path to the end configuration, which is, by construction (as
explained in the detailed algorithm in Section IV), collision-
free as the mobile manipulator moves across the gate to the
next base node. The fourth big ellipse (at base goal pose)
shows a reconfiguration step to the goal configuration of the
manipulator.

Summarizing, HAMP searches in two sub-spaces (base
sub-space and manipulator sub-space) in a novel way and
on a “need to” basis, i.e., the search in manipulator space
is invoked only for those points in the base-space where it
is needed. Hence, HAMP searches a much smaller size of
space, as a result, it computes paths in shorter time with
higher success rate than a search in the full configuration
space of the mobile manipulator, and more importantly,
it also avoids unnecessary motion of the arm, as is the
case for the full search. Both these key points are vali-
dated in our experiments. Furthermore, we have a proof
that HAMP is probabilistically complete. Because of space
limitation, the proof is not included in the paper and will
be included in a subsequent journal version. It can be
accessed online at http://www.sfu.ca/˜vpilania/
research.html.

We emphasize that while we chose to use PRM as un-
derlying core sub-planner (for base and for the manipulator)
within the HAMP framework, one could easily substitute
other planning schemes such as Numerical Potential Field
[10] for the base or other sampling based variations such as
RRT [8] or Bi-directional RRT [11] as the underlying core
sub-planners within the HAMP framework. In fact, our PRM
implementation of core sub-planners is an adaptation of the
incremental version available in the library OMPL [12]. Our
contribution is the novel HAMP search framework.

II. RELATED WORK

Most of the previous work [13] [14] [15] [16] on mobile
manipulation mainly deals with the coordination of the mo-
bile base and the manipulator motion for following a given
end effector trajectory. In motion planning related work, Hor-
nung et al. [17] improved upon [6], [7] using a multi-layered
2D representation of both the robot and the environment.
However, since the planning is still carried out only for the
base and not the manipulator, their approach will fail in
the scenarios where arm configuration needs to be changed
while navigating from start to goal. Hornung and Bennewitz
[18] proposed an adaptive approach for efficient humanoid
robot navigation, which allows for finding solutions for foot-
step planning where planning based on a 2D grid fails. Our
approach has a similar adaptive flavour, but it is in the
context of mobile manipulation and not foot step planning.
In the context of mobile manipulators, hierarchical strategies
have been used to estimate reachable workspace [19]. An
interesting use of adaptive dimensionality has recently been
introduced in [20]. Their approach uses deterministic search
(A* over discretized C-space) in a low dimensional end-
effector C-space interleaved with tracking in the full mobile
manipulator C-space. It is shown that the resulting planner
outperforms a full dimensional RRT in a class of tasks
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where the end-effector is carrying a large payload. One could
characterize this approach toward the “greedy” end of the
spectrum since the search is, in effect, guided by a path
for the end-effector. While this approach could be used in
a relatively small region near the goal, as shown in the
example tasks in the above mentioned paper, a key problem
is that due to its deterministic search, it is not applicable
to relatively large areas as is the case in our examples.
Finally a genetic optimization based planner for a mobile
manipulator that plans motions in full configuration space
in dynamic environments is presented in [21]. Note that the
performance of genetic optimization relies on maintaining
a diverse population of trajectories that belong to different
homotopic groups which is a significant challenge.

III. PROBLEM FORMULATION

We use qi = (qbi , q
m
i ) in Cbm, the C-space of the

mobile manipulator, to represent ith mobile manipulator
configuration, where qbi = [x, y, θ] ∈ Cb, the C-space of
the mobile base, is the base configuration (also called base
pose) and qmi = [θ1, θ2, ...., θd] ∈ Cm, the C-space of
the d degree of freedom manipulator, is the manipulator
configuration. Cbfree

is the set of all collision-free base
poses and Cbobs is the set of poses resulting in collision
with obstacles. For a given base pose, qbi , Cmfree

denotes
the set of free manipulator configurations (for simplicity
we omit the reference to the corresponding base node qbi
in the notation) and Cmobs

denotes the set of manipulator
configurations that are in collision with obstacles. We use
qmH to denote the home configuration of the manipulator, a
compact and folded configuration of the arm, specified by
the user. For simplicity of explanation, the 3D environment
is assumed to be known or acquired by previous sensing, but
our framework is extended to the simultaneous sensing and
planning by incorporating a view planner similar to [22],
[23]. Given a 3D map, the start qs = (qbs, q

m
s ) and goal

qg = (qbg, q
m
g ), the objective of our HAMP algorithm is to

find a collision-free path.
Because of the hierarchical and adaptive approach, the

nature of mobile manipulator path will have a specific
structure as shown in Figure 2 and can be expressed as

Πbm = {(qbs, πm
s ), (qb1, π

m
1 ), ..., (qbn, π

m
n ), (qbg, π

m
g )}

We call this type of specific mobile manipulator path as
an H-path. It consists of a set of mobile base poses qbi
(blue dots) and for each base pose, there is a corresponding
manipulator reconfiguration path πm

j (white dots connected
via light green edges). Each manipulator path πm

j is a
set of manipulator configurations. πm

s , πm
1 , πm

n , πm
g are

manipulator’s paths at the mobile base states qbs, qb1, qbn,
qbg respectively. Smaller ellipses have only one white dot,
implies that manipulator path for those ellipses has only one
configuration, in which case no reconfiguration motion of
the manipulator is needed. It is implicit in the notation that
the mobile manipulator motion from a node, say (qbi , π

m
i ) to

(qbj , π
m
j ) consists of three steps: (i) at qbi , the manipulator will

reconfigure by moving along πm
i to the last configuration in

πm
i , (ii) with this new fixed manipulator configuration, the

base moves to qbj , and (iii) manipulator again reconfigures
by moving along πm

j to the last configuration in πm
j .

IV. THE HAMP ALGORITHM

We now describe the HAMP algorithm in detail explained
in Algorithm 1.

In the first stage, a routine CONSTRUCTBASEROADMAP() is
invoked to build a base roadmap in Cbfree

by randomly
sampling base poses (with manipulator in a fixed home
configuration) and connecting them as in BasicPRM routine
in [24], and the pseudo-code for it is given in Algorithm 2.
It constructs a base roadmap in an incremental manner until
start and goal nodes are connected. Please note that while the
sampling is in Cb, the collision checks are done for the entire
mobile manipulator with manipulator in fixed home configu-
ration. One could simply construct the base roadmap for base
only, however, this could lead to several nodes/edges being
invalidated in the subsequent stage. Algorithm 2 returns a
connected base roadmap for start and goal base poses with
manipulator in home configuration.

For second stage, we augment the node structure such
that each node n, in addition to a base pose n[qb], and
manipulator configuration n[qm], now has a best path field
n[p], a cost n[c] (Euclidean metric in Cb) and a set of
reconfiguration path fields n[RPATHS[nadj ]], one path for each
adjacent node, nadj .

The second stage described in Lines 5-25 of Algorithm 1
is a search mechanism that searches the base roadmap using
a variant of Dijkstra’s algorithm and SEARCHMANIPPATH()
routine in an intertwined manner. First, we change the
manipulator configuration at start node, ns, in the base
roadmap from home qmH to a given configuration qms and
insert it in the search queue (Line 4). This is needed because
the base roadmap was constructed with qmH which is different
from qms .

At each iteration of the while loop (Line 5), a node n is
popped out from search queue and if the base component
is not the base goal node then the manipulator configuration
corresponding to node n is checked for collisions along each
edge formed with adjacent nodes n′ and in case a collision is
detected, a reconfiguration path is searched for the manipula-
tor. This is done by invoking a routine SEARCHMANIPPATH().
If routine SEARCHMANIPPATH() returns success as shown by
the check on Line 17, then we insert adjacent node n′

into the search queue and update the member variables at
nodes n and n′ (Lines 18-21). At node n, we update the
reconfiguration path corresponding to adjacent node n′, while
at node n′, we change the manipulator configuration with the
last configuration qmnew in the reconfiguration path and also
update the new path and the corresponding cost. If the base
component of popped out node (n[qb]) from search queue is
the base goal node (ng[qb]), then simply a manipulator recon-
figuration path πm

ng
is searched from achieved manipulator

configuration q̂mg to the desired manipulator configuration qmg



Algorithm 1: Πbm = HAMP(qs, qg, q
m
H )

Input: qs := (qbs, q
m
s ), qg := (qbg, q

m
g ) and qmH

Output: H-path Πbm from qs to qg
Gb := CONSTRUCTBASEROADMAP(qbs, qbg , qmH )1

Augment node structure with best path p := ∅, cost2

c := 0 and reconfiguration paths RPATHS[nadj ] = ∅ such
that ni := {qb, qmH , p, c, RPATHS[·]}
while ! TIMEUP do3

Q← ns := {qbs, qms , ∅, 0, ∅}4

while Q 6= ∅ and ! TIMEUP do5

n :=POP(Q)6

if n[qb] = ng[qb] then7

πm
ng

=SEARCHMANIPPATHATBASEGOAL(q̂mg , q
m
g )8

if πm
ng

= ∅ then9

Continue (go to step 5)10

end11

Exit (go to step 33)12

end13

for all n′ of adj[n] and n′ /∈ n[p] do14

if n[c]+cost[enn′ ] < n′[c] then15

(qmnew, π
m
n ) :=SEARCHMANIPPATH(n, n′);16

if πm
n 6= ∅ then17

n′[c] := n[c]+cost[enn′ ]18

n[RPATHS[n
′]] := πm

n19

n′ := {−, qmnew, n[p]∪{n′}, n′[c],−}20

Q← Q ∪ {n′}21

end22

end23

end24

end25

if ! TIMEUP then26

for each node ni in Gb do27

ni := {ni[qb], qmH , ∅, 0, ∅}28

end29

EXPANDBASEROADMAP()30

end31

end32

return Πbm33

at base goal pose (Lines 7-13). The final path is computed
using ng[p] and ni[RPATHS[nadj ]] such that ni, nadj ∈ ng[p].

If the search mechanism (stage 2) fails to find a path in the
base roadmap constructed during stage 1, then we go back to
stage 1 to further expand the base roadmap and the process
repeats. The base roadmap expansion step is carried out from
Lines 26-31 by invoking a routine EXPANDBASEROADMAP()
which randomly samples additional base poses and adds
them to the base roadmap, as well as expands the base nodes
in narrow regions. We have implemented the random-bounce
walks strategy of standard PRM [9]. One could also use other
strategies [24].

SEARCHMANIPPATH() routine works as follows: it first
checks if the manipulator configuration at base node n is
collision-free along the edge formed with adjacent base node

Algorithm 2: Gb = CONSTRUCTBASEROADMAP(qbs, qbg , qmH )

ns :=ADDNODE(qbs, q
m
H ); ng :=ADDNODE(qbg, q

m
H )1

Create edge if COLLISIONFREE(ns, ng)2

while ! SAMECOMPONENT(ns, ng) and ! TIMEUP do3

Sample base poses qbi from Cbfree
using a standard4

PRM sampling strategy to build base roadmap node
set {ni} such that ni := (qbi , q

m
H )

Create edge set {eij} between nodes (ni, nj) if5

COLLISIONFREE(ni, nj)
end6

return Gb = {{ni}, {eij}}7

n′ (Lines 1-4, Algorithm 3). If it is, then the returned
manipulator path is that single configuration. This corre-
sponds to the small purple ellipses with one white dot in
Figure 2, which indicates that the manipulator configuration,
corresponding to the white dot, is collision free along the
edge and no manipulator planning was required. Otherwise,
a set of manipulator configurations (goalm)2 are randomly
sampled at base node n using a routine COMPUTEARMGOALS(),
described in Algorithm 4, such that each of the configuration
in the goalm is collision-free along the edge formed with an
adjacent base node n′. The manipulator planning is carried
out at base node n, by constructing an arm roadmap using an
incremental PRM and a manipulator path is searched from
manipulator configuration at base node n to any of the goal
configurations in goalm. To make the distinction between
roadmap nodes in Cb and Cm , we use superscript m for the
arm roadmap nodes in Cm.

We can divide the failures to solve the overall problem
within permitted time in three types:

a) Type 1 - CONSTRUCTBASEROADMAP() fails to connect the
start and goal configurations of the mobile manipulator
with manipulator in home configuration for the entire
base roadmap.

b) Type 2 - SEARCHMANIPPATH() fails to search
for a manipulator path, mainly because, either
COMPUTEARMGOALS() fails to find manipulator
goal configurations within ARMGOALSTIMEUP or
SEARCHMANIPPATH() fails to connect the start
manipulator configuration at node n to any
of the goal configurations reported by routine
COMPUTEARMGOALS() within ARMPLANNINGTIMEUP.

c) Type 3 - path search reaches the goal node in the base
roadmap but SEARCHMANIPPATHATBASEGOAL() fails to
compute a path from achieved manipulator configura-
tion to the desired one.

V. RESULTS

We performed a series of simulations and real experiments
on the SFU mobile manipulator roaming around in our lab to

2We are using multiple possible goal configurations because empirically
it was faster than searching for a single goal configuration. Most likely, it
is because the likelihood of multiple goal configurations being difficult to
reach would be significantly lower.



Algorithm 3: (qmnew, π
m
n ) = SEARCHMANIPPATH(n, n′)

Input: base roadmap nodes n, n′ along an edge en,n′

Output: Manipulator path πm
n at node n with qmn as

start and qmnew as goal such that qmnew is
collision-free along an edge en,n′

n′′ := (qbn′ , qmn )1

if COLLISIONFREE(n, n′′) then2

qmnew ← qmn and πm
n ← {qmn }3

end4

else5

goalm := COMPUTEARMGOALS(n, n′, KGoals)6

nms :=ADDNODE(qmn ); nmgi :=ADDNODE(goalm[i])7

while ! ARMPLANNINGTIMEUP and ! TIMEUP do8

Sample qmi from Cmfree
using a standard PRM9

sampling strategy to build arm roadmap and
search for a path πm

n from nms to nmgi
qmnew ← nmgi10

end11

end12

return (qmnew, π
m
n )13

Algorithm 4: goalm = COMPUTEARMGOALS(n, n′, KGoals)

Input: base roadmap nodes n, n′ and number of arm
configurations (KGoals) to be computed

Output: a set of arm configurations as goals
while i < KGoals and ! ARMGOALSTIMEUP do1

sample qmi from Cmfree
2

u← {qbn, qmi } and v ← {qbn′ , qmi }3

if COLLISIONFREE(u, v) then4

goalm := goalm ∪ {qmi }; i := i+ 15

end6

end7

return goalm8

evaluate HAMP. We run our tests under linux on a Pentium
dual core 2.5 Ghz computer with 4GB memory.

A. Simulation

We ran HAMP and a full 9D PRM on 5 different sce-
narios with varying levels of complexity in simulation and
compared the outcomes. We used OMPL [12] to implement
full 9D PRM in an incremental way (single-query) along
with random-bounce walk expansion strategy [9] to connect
narrow passages. The key parameters we used in HAMP
are as follows: KGoals = 3, ARMGOALSTIMEUP = 2 seconds,
and ARMPLANNINGTIMEUP = 6 seconds. For HAMP and full
9D PRM, we used 5 nearest neighbours to connect the new
sample to the neighbouring nodes. Simulation environment
corresponding to scenarios A and B is shown in Figure
1. The mobile manipulator with arm in vertically extended
configuration was required to navigate from one side of the
door to the other side. In A, the manipulator has no payload,
whereas in B, we increased the complexity by adding a
payload - a stick of 50cm length to the manipulator. In

Fig. 3. Simulation test for scenario B: This simulation shows the mobile
manipulator carrying a 50 cm stick as payload and navigating from one side
of the door to the other side. The corresponding base roadmap and base
path (blue color) of H-path are shown as well. (a) mobile manipulator’s
start configuration; (b), (c), (d) show a sequence of snapshots of mobile
manipulator motions along the path with the same arm configuration; (e),
(f) show the first reconfiguration step, in order to move along the path, arm
configuration needs to be changed, as mobile manipulator can not cross the
doorway due to arm and long payload collision with gate; (g), (h) show the
second arm reconfiguration step; (i) the mobile manipulator advances along
the path with arm in final configuration of the last reconfiguration step; (j),
(k) show the third reconfiguration step; (l) mobile base has reached the goal
but not the arm, this snapshot shows the mobile manipulator before the final
reconfiguration step at goal.

C, the task required passing a 50 cm long stick through a
window of 40cm×50cm, while in D, the mobile manipulator
needed to navigate through five cuboid obstacles in order
to reach the goal. In scenario E, the mobile manipulator
carrying a stick of 100 cm, enters from an open area into a
very narrow corridor of width 80cm, navigates through the
corridor and makes a turn through a very tight round corner
and then finally exits into an open area, requiring frequent
reconfiguration steps along the way.

Figure 3 shows snapshots of one of the simulation tests
for scenario B. The manipulator changes its configuration
3 times along the path and once at the goal. Videos corre-
sponding to the simulation tests for scenarios A, B, C, D are
available online at http://www.sfu.ca/˜vpilania/
research.html, while for scenario E, the corresponding
video is attached to this paper.

We compared HAMP and full 9D PRM on the basis
of three criteria: (a) planner run time, (b) percentage of
successful attempts, (c) base path length, and the results are
presented in Table I. We observe from the table that for each
of the scenarios A to E, full 9D PRM is outperformed by
HAMP. HAMP solved the problems in less time (and less
number of collision checks) with a higher success rate and
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TABLE I
EXPERIMENTAL RESULTS IN 5 SCENARIOS FOR MOBILE MANIPULATOR PLANNING (HAMP VS. FULL 9D PRM).

Permitted Planner # Base Nodes Total Arm Nodes Time (s) # Coll. Checks #Reconfig B. Path #Succ.
Time (s) mean s. d. mean s. d. mean s. d. mean s. d. /#Arm Checks. Len. (m) /#Runs

A 40 HAMP 87 108 63 104 5.7 6.1 23k 25k 4/95 4.5 30/30
PRM 489 326 N/A N/A 12.5 10.7 80k 52k N/A 6.1 24/30

B 40 HAMP 115 152 180 269 12.9 11.2 39k 36k 6/116 4.6 29/30
PRM 823 267 N/A N/A 19.5 14.0 130k 41k N/A 7.8 7/30

C 120 HAMP 2 1 1958 920 36.9 19.4 173k 81k 1/1 0.8 30/30
PRM 1638 265 N/A N/A 84.2 21.3 297k 97k N/A 4.9 12/30

D 70 HAMP 29 10 736 796 27.8 14.6 114k 76k 15/34 3.2 28/30
PRM 945 491 N/A N/A 38.2 18.2 192k 82k N/A 4.3 21/30

E 300 HAMP 96 76 2897 1874 77.8 42.5 205k 134k 80/278 3.0 29/30
PRM 10154 2469 N/A N/A 193.5 48.9 786k 187k N/A 4.7 23/30

shorter base path lengths as compared to full 9D PRM paths.

HAMP’s failures for the scenarios B, D, E are of Type
2. In this case, the base roadmap gets denser and denser
in an attempt to connect the narrow regions, and hence
requires large number of calls to SEARCHMANIPPATH(). These
failures happened because permitted time was over before the
completion of calls to SEARCHMANIPPATH() for all the edges
in the base roadmap. In E, sometimes (11 out of 30 runs)
HAMP failed to find an H-path in the first iteration (Lines
1-25, Algorithm 1) even though the start and goal base poses
were in the same connected component of the base roadmap.
This is mainly because of the failure of manipulator planning
(Type 2 and 3 failures). In that case, HAMP expands the base
roadmap by adding more samples (lines 26-31, Algorithm 1)
and successfully found the path in the subsequent iterations.
On average, HAMP took 3 “expand roadmap” iterations to
find a path for scenario E. In practice, it also attests to
probabilistic completeness of HAMP, i.e., if it can not find
a path in the first iteration then it adds more samples and
repeats the search mechanism until a path is find or the
permitted time to solve the problem is over. In addition, it
is noteworthy that manipulator reconfiguration (“#Reconfig”)
is needed rather infrequently as compared to the number of
times manipulator configurations were checked for collisions
(“#Arm Checks”) along the edges in the base roadmap as
illustrated in the column “#Reconfig/#Arm Checks” in Table
I. This supports our claim that HAMP moves the manipulator
on a “need to” basis. Indeed the ratio is higher for more
cluttered scenarios, but even for E, it is less than 30%
(80/278).

Lastly, we illustrate the undesired motion of the arm in full
9D PRM vis a vis HAMP via a graphical representation, as
shown in Figure 4, It shows a typical manipulator motion for
HAMP and for full 9D PRM for scenarios B and E. Note
that these motions were generated after a postprocessing step
(path shortening) [25] . The figure shows the manipulator
motion essentially as a histogram (red vertical lines) along
the base path, shown in blue. For full 9D PRM (left figures),
the height of each red line denotes the length of arm motion
(in Cm) between two consecutive poses along the discretized
base path. For HAMP, the manipulator motion takes place
at fixed base configurations, hence the length is zero except
at some base poses, where the height of red line denotes the
length of the manipulator reconfiguration path (right figures).

Fig. 4. This figure shows a comparison of manipulator motion (the height
of red lines corresponds to the length of arm motion (in Cm)) along the
base path (blue line) between full 9D PRM (left) and HAMP (right) for
scenarios B (top) and E (bottom). Please see text for explanation.

It clearly supports our claim that HAMP avoids undesired
arm motions as the base moves along a path which is not
the case with full 9D PRM.

B. Preliminary Experiments on SFU Mobile Manipulator

We also tested HAMP on SFU mobile manipulator in our
lab. Our experimental set-up consists of two doorways, 2nd
doorway is just 10 cm above the minimum height that can be
attained by the manipulator. We carried out 18 experiments
on SFU mobile manipulator with the experimental setup,
the minimum and maximum planner runtime was noted to
be 2.43 seconds and 7.8 seconds, respectively. Video corre-
sponding to real experiment on SFU mobile manipulator is
available online at http://www.sfu.ca/˜vpilania/
research.html. In real experiments, for now, we are not
able to demonstrate the pole example due to lack of a gripper
in SFU mobile manipulator.

VI. CONCLUSION AND FUTURE WORK

We presented a hierarchical and adaptive mobile manip-
ulator planner (HAMP) which searches in two sub-spaces,
the base sub-space and the manipulator sub-space, in a novel
way and on a “need to” basis, i.e., the search in manipulator
space is invoked only for those points in the base-space
where it is needed. We proved that HAMP is probabilistically
complete. We implemented HAMP for a 9 degree of freedom

http://www.sfu.ca/~vpilania/research.html
http://www.sfu.ca/~vpilania/research.html


mobile manipulator and showed that it can find a path in
environments where conservative approaches will fail since
manipulator configuration needs to be changed several times
while navigating from start to goal. We also compared
HAMP with full 9D PRM and observed that HAMP takes
less time to compute the paths with a higher success rate.
In addition, the base path length corresponding to the H-
path given by HAMP is significantly less than the length of
base path given by the full 9D PRM. HAMP also avoids the
undesired arm motions as the base moves along a path.

Our expectations are that the benefits of HAMP will be
similar with RRT (or Bi-directional RRT) as core underlying
sub-planners. We would like to implement such a planner and
empirically show this. We would also like to incorporate
task space constraints within the HAMP framework, e.g.,
by substituting SEARCHMANIPPATH() with ATACE [26] or
CBiRRT [27] or [28] that does incorporate task constraints.
While we have focussed on a specific platform, i.e., mobile
manipulator, where the hierarchy is defined across the base
and the manipulator, the HAMP approach can be generalized
over any hierarchical abstraction over the entire configuration
space. We intend to explore this.
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