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Abstract— We present a fully autonomous and integrated
system that solves a critical and challenging problem in service
robotics, that of end to end pick-and-place task (with and
without task constraints) in unknown static environments. Our
system is illustrated on a mobile manipulator equipped with
base mounted and eye-in-hand sensors. The system intertwines
one-step mobile manipulator planning and base mounted sensor
scan with multi-steps manipulator planning interleaved with
eye-in-hand sensor based exploration. We believe that our
integrated pick-and-place system scores several firsts: a) its
competency is far superior to that of the previous integrated
planning systems in that it considers the currently unexplored
(and unknown) region as obstacle, thereby resulting in com-
pletely safe paths, b) it explores the unknown environment as
well as unknown grasping object using both base mounted and
eye-in-hand sensors, c) it integrates two different view planning
schemes to build a global world representation in term of
Octomap, and finally d) the underlying planners judiciously
generate safer paths for next best view of the base (NBV-B)
and the arm (NBV-A) by considering base pose uncertainty and
its effects on manipulator motions. We demonstrate our system
both in simulation and on the actual SFU mobile manipulator.
We also experimented with incorporated task constraints and
report on lessons learned on system specifics and practical
issues.

I. INTRODUCTION

An end to end pick-and-place task in unknown environ-
ment is one of the challenging problems that need to be
solved in order to successfully attain the deployment of
fully autonomous robots in service and personal robotics
like warehouses, homes, hospitals, etc. The solution to such
problem first requires solving many other sub-problems: (i)
navigating from one location to another in the known envi-
ronment while considering uncertainty and task constraints
(if any), (ii) exploring the unknown environment with the
help of sensor(s) mounted on the robotic platform, (iii)
pick-and-place pipeline to automatically grasp an object and
place it at the desired location, (iv) maintaining global world
representation to know which part of environment is known,
unknown (unexplored) and obstacle, (v) estimating the pose
of the robotic platform. The modules associated with these
sub-problems need to be tightly integrated so that a unified
framework can be obtained that is capable of carrying out
end to end pick-and-place task in unknown environment. The
robotic platform for implementing such unified framework
could be many, for example, most popular ones are wheeled
mobile manipulator and humanoid. Recently, the researchers
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Fig. 1. The SFU mobile manipulator (Powerbot mobile base, Schunk 6
DOF powercube arm, Schunk two-finger parallel gripper) and mounting
locations of different sensors.

also attempted to mount the manipulator on small sized
unmanned aerial vehicle and underwater robotic boat.

The unknown environment could be either static or dy-
namic, i.e., containing moving obstacles. Consideration of
moving obstacles brings more challenges mostly for the
sub-problems (i) to (iv) as mentioned above. Therefore, we
limit our proposed system to handle only the unknown static
environments.

We propose a fully autonomous and integrated system that
carries out an end to end pick-and-place task in unknown
static environments and demonstrated the system using a
wheeled mobile manipulator as shown in Figure 1. The mo-
bile manipulator is equipped with a Kinect sensor mounted
on the base (provides an area scan depth map) and a eye-
in-hand Hokuyo line scan sensor (mounted on the wrist of
the arm with the last joint being used to obtain a area scan
depth map). The task of the autonomous mobile manipulator
is to explore the environment, pick the object once it is in the
known region and then explore the remaining environment (if
needed) with object in hand, to place it at the target location.
We assume that very small region around mobile manipulator
is known in the beginning but other than that the entire
environment is unknown. We believe that our integrated pick-



and-place system scores several firsts: a) its competency is far
superior to that of the previous integrated planning systems
in that it considers the currently unexplored (and unknown)
region as obstacle, thereby resulting in completely safe paths,
b) it explores the unknown environment as well as unknown
grasping object using both base mounted and eye-in-hand
sensors, c) it combines two different view planning schemes
to build a global world representation in term of Octomap,
and finally d) the underlying planners judiciously generate
safer paths for next best view of the base (NBV-B) and the
arm (NBV-A) by considering base pose uncertainty and its
effects on manipulator motions.

Please note that our integrated system was partly men-
tioned in [1], however, that was in limited sense and mainly
in the context to show the competence of our HAMP-BUA
algorithm (Hierarchical and Adaptive Mobile Manipulator
Planner with Base pose Uncertainty and its propagation to
Arm motions) [1]. Here, we present it as a standalone work
with more detailed information regarding system implemen-
tation. For example, we provide the implementation detail
of local Voxelmap and view planning for the arm, both are
inter-connected and important components of the integrated
system. The local Voxelmap is used by the arm view planning
to compute next best view NBV-A. Key parameters associ-
ated with arm view planning are also discussed. Moreover,
we bring out the details of practical issues faced during real
implementation like getting incomplete scan from Hokuyo
eye-in-hand sensor due to black surfaces, not all sensor scans
are inserted into global world representation (Octomap) due
to high frequency of incoming scans and limited capacity
of Octomap in term of scan insertion. The missing scans
and the corresponding remedy lead to serious repercussions
on the computational and execution time to complete the
entire task. It is straightforward to extend our system to
incorporate task constraints, i.e., end to end pick-and-place
task can be carried out in unknown static environment while
maintaning task constraints. This is achievable if the planners
used in arm and base view planning are replaced with their
task variants. The task constraint version of HAMP-BUA is
available in [2]. Based on our experimental results, it is not
that easy in practice (however, theoretically seems feasible)
to carry out arm view planning while taking into account the
task constaints using a robotic platform similar to ours. We
also discuss our results for the same. Note that end to end
pick-and-place task with task constaints in unknown static
environment is not a crazy idea. We see that sort of scenarios
in our day to day routines, for example, a person is holding
a coffee mug and running to catch the train while navigating
through the crowd (unknown environment) without switching
the mug from one hand to another as well as keeping the mug
upright (maintaining constraint) in order to avoid spilling.

II. RELATED WORK

Please note that individual exploration (view planning
algorithms) techniques for either base or the arm are not the
focus of this section. There is huge literature on that and a
good review can be found in [3]. Here we review the related

work on integrated and autonomous systems that use mobile
manipulator for some application in unknown environment.
Note that we consider unknown regions of the environment
as obstacles and not collision-free regions (which can clearly
be detrimental) as the assumption in [4]. Furthermore, it
does not use view planning to explore the environment.
It just incorporates the sensor readings (from a 3D sensor
mounted on the base and not acting as eye-in-hand) as the
mobile manipulator moves along the path that follows end-
effector trajectory. While it is true that in certain cases, if the
environment is engineered to be free of obstacles, indeed one
can make the assumption that unknown space is free. But in
most environments (for example, consider a helper robot in
an indoor environment with chairs and tables or hallways
in buildings where there can be pillars in the middle of
the open spaces), assuming unknown as free will lead to
collisions, particularly for the arm - it may work just for the
base because the planar lidars often mounted on the base
will scan the unknown region in front before the base moves
into the region, but it will not work for the manipulator
since it can move into regions which have not been scanned
by the sensor. [5] searches for an object in the unknown
environment using a planar range sensor mounted at end-
effector but mobile base was fixed in their experiments. More
recently, the winning entry to the Amazon Picking Challenge
successfully performed several pick and place tasks and is
described by [6]. However, the task was quite constrained and
several key choices were made to solve the specific task. The
base motion was limited in that it was used simply to achieve
a specific end effector pose, the environment was assumed
known, and there was virtually no motion planning involved,
with arm motions generated from pre-defined sequences of
joint and task space controllers and on-line monitoring was
used to guide task execution. The system proposed by [7] is
closer in spirit to ours in that it also integrates view planning
and path planning for autonomously building a 3D model
of an object in unknown environment. However it considers
a completely decoupled approach for mobile manipulator
planning and moreover, uncertainty is not considered at all.
In fact, the lack of uncertainty consideration and the resulting
plan failures in this system were a key motivation for us
to incorporate uncertainty. There is lot of work related to
environment exploration and mapping both in 2D and 3D
either using mobile base [8] or UAVs [9]. However, we have
not come across any work where mobile manipulator is used
to explore the unknown environment and achieve some tasks
(for example, end to end pick-and-place).

III. ROBOTIC PLATFORM

The SFU mobile manipulator model, both in simulation
and physical environment, consists of a powerbot mobile
base, 6 DOF Schunk powercube arm mounted on the base,
2-finger Schunk gripper, LMS100 2D range sensor placed
in front of mobile base (used for SLAM), Kinect 3D depth
and image sensor mounted on the base, and a light weight
Hokuyo 2D range sensor mounted on the gripper (to act as
eye-in-hand) as shown in Figure 1.



An eye-in-hand sensor (Hokuyo in our case) is better
able to explore the environment regions that are otherwise
occluded for base mounted Kinect. Since the eye-in-hand
sensor can provide only line scans, therefore, at NBV-A
(next best view of arm), the sensor rotates to make an area
scan by collecting all the line scans during rotation. The
second sensor (Kinect) is added for online monitoring of
path execution, however, once it is there it also acts as an
additional sensor for exploring the environment. This is also
required because Hokuyo does not work well with black
surfaces and most of the surfaces in real environment (RAMP
Lab) are black. Kinect as eye-in-hand sensor (instead of
Hokuyo in order to speed up the exploration) can not sense
upto 1 meter distance (near clipping) and therefore, can not
scan nearby regions. The third sensor, LMS 100 mounted at
the front bottom of the base, is used to localize the mobile
base.

IV. AUTONOMOUS SYSTEM FOR MOBILE
PICK-AND-PLACE TASK IN UNKNOWN ENVIRONMENTS

In this section, we report our integrated and autonomous
system for end to end pick-and-place tasks in unknown static
environments.

Given global pick and place end-effector poses, the task
of the autonomous mobile manipulator is to explore the
environment, pick the object once it is in the known region
and then explore the remaining environment (if needed)
with object in hand, to place it at the target location (place
pose). We assume that very small region around mobile
manipulator is known in the beginning but other than that
the entire environment is unknown. In future the grasp would
be decided by the system too but for now we give the grasp
pose.

A. System description

Our integrated and autonomous system architecture is
described in Figure 2. The only inputs to the system are
global (w.r.t. world frame) pick and place end-effector poses.
For each given pose, the corresponding possible base poses
and manipulator configurations are computed. Note that
at current stage the collision status of these base poses
and manipulator configurations can not be verified as the
environment is unknown. The method to compute a valid
base pose and manipulator configuration corresponding to
an end-effector pose is described in [3] and is briefly as
follows. First, a base pose is randomly sampled from a disk
region (bounded by the arm reachability) and then a given
end-effector pose (pick or place) is checked for reachability
from the sampled base pose using inverse kinematics.

At any instant of time the system can be in one of the
four states: EXPLORE A, EXPLORE B, PICK and PLACE.
In the beginning, the system starts in EXPLORE A. This
module uses eye-in-hand sensor to explore the local region
around the mobile manipulator. Once the local region is
fully explored, the system changes its state to EXPLORE B.
Broadly, one task of this module is to check for the reachabil-
ity of pick and place base poses. If any of them is reachable
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Fig. 2. An integrated and autonomous system for end to end pick-and-place
task in unknown environments.
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Fig. 3. EXPLORE A module of the system.

then a path is planned to move the mobile manipulator to
that base pose. Depending on success, the state is changed
to PICK or PLACE. If none of these pick or place base poses
is deemed reachable, then the EXPLORE B module explores
the environment by reaching to a NBV-B and state is then
changed to EXPLORE A. If at some point of time, the state
is changed to PICK, i.e., pick base pose is reached, then the
PICK module plans for pick end-effector pose and grasps
the object. If grasping is successful then the state is switched
back to EXPLORE B to explore the remaining environment
to complete the other part of objective, i.e., to place the
object. As the system explores more and more environment
(using EXPLORE B and EXPLORE A), the place base pose
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will be reachable at some point of time. Once the place base
pose is reached then PLACE module is invoked to place
the object at target location. The details of these modules
are provided from Figures 3 to 4. We now describe these
modules.

EXPLORE A (see Figure 3) creates a local Voxelmap, a
3D version of occupancy grid map, at fixed base pose. Note
that the boundaries of Voxelmap should be with in the reach-
ability of end-effector. The status (occupied, free, unknown)
of each voxel cell in the Voxelmap is updated by communi-
cating with global Octomap (3D world representation). Then
the frontiers (free cells next to unknown) are computed. If
the number of frontiers are below a given threshold then
the arm exploration is aborted which states that the local
region around mobile manipulator is fully explored. If not
then arm view planning is invoked to compute a set of end-
effector poses arranged in the priority order of information
gain (which is the number of unknown voxels in the sensor
FOV at the planned pose). We use MPV (Maximize Physical
Volume) based algorithm for arm view planning as alluded
to in Section II. The procedure to compute NBVs-A is as
follow: arm view planning samples valid (IK exists and the
solution is collision-free as well with in joint limits) end-
effector poses and computes the information gain at each
sensor pose by simulating the sensor model and then returns
the set of these poses in the order of high information gain
at the top. The end-effector is then moved to arm next best

view (NBV-A) to take the scans using eye-in-hand sensor.
Note that scans are inserted into the global Octomap and not
the local Voxelmap. Lazy-CPC-PRM [10] is used to plan a
manipulator path for the IK solution of NBV-A as goal. After
scanning, the local Voxelmap is updated and the procedure
continues until the Voxelmap is explored or the maximum
number of iterations are reached.

EXPLORE B (see Figure 4) first checks, with in the
known region of the environment, if it is possible to move
the mobile manipulator to pick base pose or place base pose.
If the object is not picked yet then the collision status of
previously computed pick base poses is checked. If any of
the base pose is found to be collision-free then HAMP-BUA
is used to plan a path. If the pick base pose is reached
(planning is successful) or the mobile base is already at pick
base pose then the EXPLORE B module simply switches
the state to PICK. Similarly, if the object is grasped but
not placed, the reachability of a collision-free place base
pose is checked and if successful, the EXPLORE B module
aborts by switching the state to PLACE. However, if the
planning fails or pick and place base poses are not collision-
free with in the explored region then a base next best view
(NBV-B) is reached to explore the environment using sensor
(Kinect) mounted on the base. Again, the sensor scans are
inserted into the global Octomap. After taking scans, the
state is switched to EXPLORE A to explore the local region,
this time from a different base pose. To compute NBV-
B, we invoke base view planning where we use frontier-
based exploration [11]. The base view planning uses a 2D
occupancy grid map to compute NBV-B and this map comes
from a series of steps as shown in Figure 5.

We now explain PICK and PLACE modules which are
pretty standard in grasping domain. PICK module is invoked
once the mobile manipulator has reached a base pose from
where object can be grasped. Previously computed infor-
mation (base poses and manipulator configurations) corre-
sponding to pick end-effector pose (grasp pose) may not be
useful any longer because due to the uncertainty in mobile
base position, the mobile manipulator (basically mobile
base) does not exactly reach the intended pick base pose.
Therefore, either a new manipulator configuration needs to
be searched from the reached base pose or a new valid grasp
pose (and thereby the corresponding reachable manipulator
configuration), with in the close proximity of already given
grasp pose, needs to be computed. In case of latter (grasp
adjustment), we use a simple approach as follows: Recall
that a grasp pose is denoted as p = [x, y, z, α, β, γ], pose
of end-effector frame (located in the center of gripper jaws)
with respect to a fixed frame, for example, base frame of
the manipulator. In simulation and real experiment examples,
the new valid grasp pose is computed by varying γ while
keeping other 5 parameters same. As mentioned earlier, this
is a very quick and an ad hoc attempt to show the integrated
system. For a valid grasp pose (collision-free IK solution
exists), we also test if its pre-grasp and post-grasp poses
are valid ones as well, which are typically 10 cm offset
(back and up, respectively) from the intended grasp pose,



see [12] for detail. Moreover, the end-effector motions from
pre-grasp to grasp and grasp to post-grasp should be feasible.
Once a valid grasp is found, a path is computed using Lazy-
CPC-PRM to reach to the IK solution of pre-grasp pose and
then followed by a straight line motion of the end-effector
from pre-grasp to grasp pose. For more precise grasping,
one can use reactive behaviour while moving the gripper
from pre-grasp to grasp pose or a force-regulating controller
that helps to close the gripper which takes feedback from
tactile sensor in order to safely grasp an object [12], [13].
However, in our implementation, we skip this due to the
lack of tactile sensor in our gripper. PLACE module also
follows the same steps but in reverse order. In future, our
PICK module will be replaced by a systematic approach.
For example, for cases where the object is known and can be
visually tracked (by putting some markers), visual servoing
with end-effector cameras can ensure the robust execution
of grasps by incrementally correcting the position of the
object relative to the gripper. An excellent survey on this
subject can be found in [14]. For cases where the object and
gripper can not be visually tracked, methods such as [13],
[15] can be incorporated. While in the presence of object
pose uncertainty and high clutter, push-grasping approach in
[16] can be helpful.

B. Sensor scans and world representations

Figure 5 describes how the scans from different sensors
are inserted and two (2D and 3D) world representations are
formed. Hokuyo and Kinect scans are inserted into global
Octomap [17], a 3D world representation that maintains
occupied, free and unknown regions. From the Octomap,
we get a 3D collision map (a set of occupied and unknown
voxels, all of the same size) and a down projected (up to a
certain height) 2D occupancy grid map. This occupancy map
is further fused with another 2D map obtained from SLAM
module (which uses LMS100 scans for localization with map
resolution of 0.05 m) to get a single 2D map. The fused 2D
map, which shares information from all the sensors, is then
used by base view planning to compute NBVs-B. We further
input this map to the costmap module (assigns costs based
on 2D occupancy grid and a user specified inflation radius)
to get a 2D costmap. Costmap is an extension of occupancy
map where a cost is assigned to each grid cell. The cost
can depend on various factors, but in our context, it is in
inverse proportion to the distance from obstacles. Inflation
radius is a safety distance margin around the obstacles. The
2D costmap and 3D collision map are then used to perform
collision checks by the planners as mentioned in Section IV-
C.

C. Planners for NBV-B and NBV-A

In end to end pick-and-place task, there are mainly two
types of movement (excluding gripper and rotating last joint
of arm to form an area scan using eye-in-hand sensor): one
is of the entire mobile manipulator to reach a NBV-B while
the other is just manipulator’s motion to reach the NBVs-
A. For the former, it is possible to fold the arm to some

safe configuration and just move the mobile base rather
than moving the entire mobile manipulator (either sequential
or continuous base and arm motions). However, there are
scenarios where it is not possible to move from start base
pose to goal base pose without reconfiguring the arm, see
[18]. Previously, we designed a range of judicious sampling-
based mobile manipulator planners that move the arm on
a need to basis and consider uncertainty at different levels.
HAMP is the deterministic version (assuming robot state is
known), HAMP-U [19] considers only base pose uncertainty.
HAMP-BUA [1] is the advance version that incorporates
uncertainty at different levels, for example, uses localiza-
tion aware sampling [20] and connection [21] strategies to
eliminate nodes and edges that do not contribute toward
better localization, considers base pose uncertainty and its
propagation to arm motions. Therefore, we use HAMP-BUA
as our core planner to generate motions for the mobile
manipulator.

We employ Lazy-CPC-PRM [10] to generate manipula-
tor motions which are needed to reach NBVs-A and for
pick-and-place. This planner assumes static base position
and computes manipulator plan by considering base pose
uncertainty.

V. INDEPENDENT EVALUATION OF ARM VIEW
PLANNING MODULE

First, we separately evaluate EXPLORE A module which
is a key component of the system. If this module does not do
its job properly then the system may not be able to complete
the pick-and-place task. We carried out 40 trials and for each
trial (with and without task constraint) we used different
scenarios ranging from simple surrounding environment (no
obstacles in the Voxelmap region) to cluttered ones like table
with objects on it along with walls on other two sides. The
task is to explore the unknown region within the boundaries
of a local Voxelmap. Our implementation is in C++ under
linux and runs on a Pentium dual core 2.5 Ghz computer
with 4GB memory.

A. Local Voxelmap and Arm View Planning Parameters

In EXPLORE A, we use three parameters. Two of them
are an integral part of traditional information-based arm
view planning: the maximum number of iterations to try
before declaring that arm view planning is over even if it
is not (we use 15), the maximum number of valid samples
(sensor views) to be searched to find the next best view
(we use 50). While the third parameter (FrontiersTH as
mentioned in Figure 3) is added by us that tells whether
arm view planning is needed or not (at fixed base pose).
If the number of frontiers in the local Voxelmap are below
10, the threshold value we used, then EXPLORE A module
declares that local region around mobile manipulator is
already explored and arm view planning is not required at
current base pose. Below we also explain the rational behind
selecting FrontiersTH as 10 and not 0. The end-effector
in our SFU mobile manipulator as shown in Figure 1 can
maximally extend up to 0.76 m. Therefore, in EXPLORE A,



we construct a Voxelmap that contains 20700 voxel cells,
each cell is a square of size 0.05 m. To give more insight,
the Voxelmap contains 23 levels such that each level consists
of 900 cells. Figure 6 shows the visualization of a Voxelmap
(light magenta) where yellow colour denotes the frontiers.
Initially, we assume that the region (cylinder of radius 0.5
m) surrounding mobile manipulator is known that is why the
center region of Voxelmap is empty, i.e., known.

Fig. 6. Voxelmap with known region in the center. Voxel cells (unknown)
are shown in light magenta and frontiers in yellow colour. The blue colour
lines show the ray tracing model to simulate the eye-in-hand sensor to
compute the information gain at NBV-A.

B. With and without task constraints

For experiments without any task constraint, we set 10
seconds as maximum permitted time for Lazy-CPC-PRM
to plan a path while for experiments with task constraint,
we set 60 seconds for Lazy-CPC-PRMTS [3]. For both the
experiments, we monitored (at each iteration) the number of
frontiers, Voxelmap update time, time to compute NBVs-
A and planner runtime. To give a clear picture of how
much time is taken by each component of EXPLORE A as
the number of iterations approach to the maximum limit,
we provide one trial result for the cluttered scenario in
Table I (without constraint) and for the simplest scenario
(no obstacles in surrounding) in Table II (with constraint).
From Table I, we can observe that the number of frontiers
decreases below threshold with the increase of iterations. It
is also important to note that the time to compute NBV-A
increases drastically as the number of frontiers dropped to
small numbers. This is because to find NBV-A for a small
unknown region requires large number of samples which in
turn requires many simulations of sensor model (ray-tracing)
which is a time consuming step. Sometime, the update of
Voxelmap takes longer (0.7 second). We use service method
of ROS (robot operating system) to communicate with global
Octomap in order to know the status of voxel cells. The delay
in updates relates to the computational load on Octomap,
for example, it needs to insert scans and at the same time a
request is made to update the Voxelmap. In our 40 trials,
EXPLORE A without task space constraint succeeded in

TABLE I
EXPLORE A MODULE TEST IN CLUTTERED ENVIRONMENT WITHOUT

TASK CONSTRAINTS.

# frontiers Voxelmap NBV-A T. Planning T.
update T. (sec) (sec) (sec)

1 1498 0.0421 3.15 6.76
2 1649 0.0016 4.93 3.63
3 1562 0.6911 3.97 3.50
4 1395 0.2380 4.90 4.21
5 1380 0.5071 4.34 3.27
6 1226 0.0448 3.97 7.34
7 1191 0.0714 4.79 2.66
8 894 0.7044 4.58 2.20
9 728 0.0098 4.28 6.49
10 491 0.0756 8.74 2.39
11 151 0.4243 14.5 1.28
12 52 0.0427 29.6 1.35
13 24 0.0938 66.1 3.18
14 4 0.1619 - -

exploring the entire Voxelmap region all the time with in
15 iterations. On an average it took 11 to 15 iterations to
explore the local region.

TABLE II
EXPLORE A MODULE TEST IN SIMPLEST ENVIRONMENT WITH TASK

CONSTRAINTS.

# frontiers Voxelmap NBV T. Planning T.
update T. (sec) (sec) (sec)

1 1498 0.3418 2.91 60 (failed)
- - - 16.18

2 1754 0.6897 3.32 60 (failed)
- - - 37.78

3 1696 0.0376 3.18 28.35
4 1581 0.0078 3.04 12.17
5 1568 0.0321 3.99 60 (failed)
. . . . .
. . . . .
. . . . .

15 1490 0.3784 4.81 60 (failed)

On the other hand, EXPLORE A with task space con-
straint failed to explore the Voxelmap even in single trial (15
iterations) as shown in Table II. Figure 7 shows the region
remained unexplored even after 15 iterations. Seeing this, we
increased the permitted time to plan a path to 180 seconds
and maximum number of iterations to 25. Still the behaviour
of EXPLORE A with task space constraint remains same.
We attribute the failure to two things: one is the Lazy-
CPC-PRMTS or in general one can say a task space planner
even without base pose uncertainty, while the second is the
constraints put on end-effector as result of which the eye-
in-hand scan explores less area as compared to when there
are no constraints. Putting Kinect as eye-in-hand sensor has
its own problems like it can not see upto 1 meter and then
there are issues with the bandwidth of sensor data which
we mention in Section VI. Because of ineffectiveness of
EXPLORE A with task constraint, for now, we limit our end
to end pick-and-place task without using any task constraints
and will pursue it separately in the future.



Fig. 7. EXPLORE A with task space constraint failed to explore complete
region of local Voxelmap. Only frontiers are shown in yellow colour, voxel
cells are not shown in this screenshot. Red colour dot shows NBV-A but
Lazy-CPC-PRMTS failed to find a path for it.

VI. PRACTICAL ISSUES: INCOMPLETE HOKUYO SCANS
AND MISSING SCANS IN OCTOMAP

For our experiments, we used Fuerte version of ROS.
Therefore, the efficiency issues of Octomap that we mention
here are related to that version. We believe that Octomap
in recent ROS version might have been improved to some
extent at least. In simulation, scans from Hokuyo sensor are
published at the rate of 10 Hz and each scan consists of 683
points. While Hokuyo on real robot also publishes at the
same rate but each scan consists of approximately 383 points.
However, given the sensor view ranging from -1.57 to 1.56
at angle increment of 0.0061 radians (slightly greater than
simulation which is 0.0046) there should be 514 points. That
implies around 130 points are not reported by sensor as the
reading of corresponding rays is zero. We found out that lot
of surfaces in our real environment (our lab) are black and for
that Hokuyo does not work well [22]. As we will see in the
result that the exploration in real environment takes longer as
compared to simulation. This is because the voxels covered
by the rays that we are missing in case of real Hokuyo will
not be cleared. For Kinect, we throttled the point cloud data
and then downsampled to get scans at the reduced rate of
2 Hz (original was 30 Hz) such that each scan consists of
around 11189 points (17500 without downsample). The job
of global Octomap is to insert scans coming from Hokuyo
and Kinect and also to publish 3D collision map as well
as downprojected 2D map upto a certain height (we use 1
meter) as shown in Figure 5. Insertion of a Kinect scan takes
0.1 to 0.2 second and 0.01 to 0.02 second for a Hokuyo
scan. While the publishing of maps (both occupancy and
collision) takes approximately 1 second. Therefore, it is
obvious that some Hokuyo and Kinect scans will be missed
given the rate at which data is published and the rate at
which global Octomap incorporates them. Our observation
from experiments tells that Kinect contribution is only 25%
in the exploration. Hokuyo is the main sensor that explores

TABLE III
COMPARISON OF SIMULATIONS AND REAL EXPERIMENTS FOR

PICK-AND-PLACE TASK IN UNKNOWN ENVIRONMENT.

Detail Simulations Real Experiments
Total trials 8 2

Total time taken (avg.) 120 minutes 150 minutes
Total execution time (avg.) 100 minutes 116 minutes

Total computational time (avg.) 20 minutes 34 minutes
Total Hokuyo scan time (avg.) 49 minutes 63 minutes
Num. of EXPLORE A calls 3 4

Num. of NBV-A reached 18 23
Num. of EXPLORE B calls 4 8

Num. of NBV-B reached 2 3

most of the environment. Therefore, one way to deal with
missing scan issue is to reduce the speed at which Hokuyo
takes the scans (we move arm with maximum speed of 0.05
radians/seconds).

Fig. 8. Real environment for pick-and-place task. The mobile manipulator
start configuration and object (bottle) are shown in the top figure while the
bottom figure shows the table on the other side of the door where object
should be placed.

VII. RESULTS

We ran our integrated and autonomous system in the
simulation and real environments and the outcomes are
provided in Table III.

For simulation, on an average our system took 2 hours
to completely explore the environment and completes the
end to end pick-and-place task. However, it is important to
note that only 17% of total time is the computational time
while the remaining is motion execution time (100 minutes)
that includes physically moving the mobile base or the arm,
whether it be for executing plans for manipulator to reach



Fig. 9. Continued...



Fig. 10. One of the real experiments for end to end pick-and-place task in unknown environment. (a.1) shows the initial unknown environment and (x.1)
shows the environment after exploration. Please see text for description.



NBVs-A and then scanning using eye-in-hand sensor, or
for base to reach NBVs-B or for pick and place motions,
etc. Of the 100 minutes, 49 minutes were taken by arm
scanning motion execution at NBV-A1 while arm motion
execution to reach NBVs-A took 38 minutes. We believe that
CPU is consumed by multiple tasks like simulation platform
(Gazebo, ROS) visualization tool (Rviz, ROS) and hence
slows down the arm motion to a great extent. On an average,
the system invoked EXPLORE A 3 times and EXPLORE B
4 times for a total of 18 NBV-A and 2 NBV-B were reached.
Our EXPLORE B calls also include call to reach pick base
pose or place base pose.

For real experiments on SFU mobile manipulator, we
used the environment shown in Figure 8 to demonstrate our
integrated and autonomous system. We carried out two trials
and the outcomes are provided in Table III. As compared to
simulations where the Hokuyo sensor was not sensitive to
black surfaces, the system for real experiments took longer
(150 minutes) to explore the environment, pick the object
and place it at target location. This is because of three key
reasons: a) we moved the arm with slow speed (maximum
speed of 0.05 radians/seconds) for safety reasons due to
some hardware issues with our Schunk arm at the time of
experiments, b) many surfaces in our real environment (our
lab) were black and for that Hokuyo does not work well,
thereby, taking more NBVs-A iterations [22], c) timing issues
associated with insertion of Hokuyo and Kinect scans into
global Octomap. Note that we hid some of the black surfaces
by covering with papers as can be seen in the screenshots
of the environment. Due to issues with eye-in-hand sensor
(Hokuyo), the system took more number of iterations in a
EXPLORE A call, i.e., in total 23 NBVs-A were reached.
Also, the system took 8 EXPLORE B calls that include few
of the failed attempts (3), for example, pick or place base
pose was collision-free but the system failed to find a path
with in the permitted time. This also shows that our system
is robust to failure of individual modules as it tries to revisit
the same problem next time in the loop.

One of the trials for real experiment is demonstrated from
Figures 9 to 10. Screenshots in (a) show the unknown and
known region in the beginning. The arm view planning
was invoked at start base pose to explore the local region
surrounding the mobile manipulator and screenshots from
(b) to (h) show the eye-in-hand sensor at different NBVs-A
and the environment left unexplored after each scanning from
a NBV-A. This EXPLORE A call took 15 iterations, i.e., 15
NBV-A were reached and the environment cleared at the end
is shown in (h.1). Compared to simulation, the EXPLORE A
module in real experiment roughly takes 30% more time
to explore the same amount of space. With in the explored
region, the pick base pose was not reachable, therefore, a
path was planned using HAMP-BUA to reach NBV-B shown
in (i). Thereafter, the pick base pose was reached and the
object was grasped as shown in (j) and (k)-(m), respectively.

1Recall that the Hokuyo line scan sensor is rotated using the last joint to
get an area scan.

Fig. 11. [Real experiment trial 2]: fully explored environment.

Screenshots from (n) to (o) show the mobile manipulator path
execution to reach NBV-B to explore the unknown region
on the other side of the door. From the reached NBV-B,
the EXPLORE A module was invoked that took 8 iterations
to explore the local region as shown from (p) to (s). Note
that, post arm exploration, there was some unexplored region
left (s.1) but that was outside the local Voxelmap (not shown
here) and on the other hand the place base pose was reachable
with in the explored region. Therefore, a path was planned
and figures from (t) to (v) show the arm reconfiguration
step along the path. In (w) and (x), the mobile manipulator
reached to place base pose and the object was placed at target
location. This real experiment trial is also shown in the video
attached to this paper. Figure 11 shows the final outcome of
our second trial where the environment was fully explored.

VIII. CONCLUSION

We presented a fully integrated and autonomous sys-
tem that carries out an end to end pick-and-place task
in unknown static environments, a critical and challenging
problem in service robotics. The system is demonstrated
with the help of simulations and real experiments on SFU
mobile manipulator. Its competency is far superior to that of
the existing integrated planning systems in that it explores
the unknown environment while considering the unknown
regions as obstacles, picks the object (once the object is
deemed to be in the known region) and then further explores
the environment with object in hand and places it at target
location only after the place location is deemed to be in
the known free region. The system presents unique way
of “How it explores (combines two different exploration
schemes into one)” and “How it maintains (global world
representation - Octomap) and reuse the information for local
purpose (local Voxelmap and 2D Occupancy map for arm and
base view planning, respectively)”. Moreover, it considers
uncertainty associated with sensors and controls with the help
of underlying mobile manipulator and manipulator planners,
thereby providing safer plans for execution.



The total time taken by the system (especially motion
execution time) can be further reduced to great extent if
the issues mentioned in Sections VII can be resolved. In
future, we seek to improve the efficiency of our system and
incorporate a more systematic pick-and-place pipeline. We
also would like to explore the possibility of making the
system work with task constraints.
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