Mobile Manipulator Planning under Uncertainty in Unknown
Environments

Vinay Pilania and Kamal Gupta

Abstract— We present a sampling-based mobile manipulator
planner that considers the base pose uncertainty and the effects
of this uncertainty on manipulator motions. The overall planner
has three distinct and novel features: i) it uses the Hierarchical
and Adaptive Mobile Manipulator Planner (HAMP) that plans
for both the base and the arm in a judicious manner, ii) it
uses localization aware sampling and connection strategies to
consider only those nodes and edges which contribute toward
better localization, iii) it incorporates base pose uncertainty
along the edges (where arm remains static) and the effects
of this uncertainty are considered on arm motion. We call
this overall planner HAMP-BUA, where BUA stands for Base
pose Uncertainty and its propagation to Arm motions. First we
evaluate our planner in known static environments and show
that it finds a safer path as compared to other variants where
uncertainty is not considered at different levels as mentioned
above. Next, we incorporate our planner within an integrated
and fully autonomous system for mobile pick-and-place tasks
in unknown static environments. A key aspect of our integrated
system is that the planner works in tandem with base and arm
exploration modules that explore the unknown environment.
Our system is implemented both in simulation and on the actual
SFU mobile manipulator and we present the corresponding
results. It demonstrates a level of competency in exploring
unknown environments for carrying out pick-and-place tasks
that has not been demonstrated before.

I. INTRODUCTION

A major challenge in motion planning is the uncertainty
inherent in robot’s control and sensing. Incorporating uncer-
tainty into planning can improve the quality of computed
plans which leads to much more reliable robot operation.
Planning under uncertainty has made considerable progress
over the past few years for mobile robots and unmanned
aerial vehicles (UAVs) but still largely ignored for mobile
manipulators. One key reason might be because most work
usually take conservative approach, which is, to fold the
arm to some “safe home configuration” and treat mobile
manipulator essentially as a mobile robot where planners
designed for them can be directly used to deal with uncer-
tainty. However, this is a very limiting approach and fails in
rather common scenarios where mobile manipulator can not
move from start to goal without changing arm configuration
as demonstrated in our previous work (Pilania and Gupta,
2014). Planners that consider uncertainty for mobile robots
are not directly applicable to mobile manipulators in such
scenarios since considering only the base pose uncertainty
is not sufficient as it does not guarantee a safer path as

Vinay Pilania and Kamal Gupta are with Robotic Algorithms & Motion
Planning (RAMP) Lab, School of Engineering Science, Simon Fraser Uni-
versity, Burnaby, BC V5A1S6, Canada. Email: vpilania@sfu.ca,
kamal@sfu.ca

demonstrated in our previous work (Pilania and Gupta,
2015a). Therefore, to get a safer path for the entire mobile
manipulator, a more comprehensive approach should be
taken, for example, in addition to base pose uncertainty, the
effects of this uncertainty on manipulator motions must be
considered as well.

Assuming that the motion of manipulator, in and of itself,
is quite accurate (a reasonable assumption, given that joint
encoders are quite precise), the uncertainty in mobile base
position (which can be significant) has repercussions on
the safety (i.e., collision status) of manipulator motions and
grasping task (robotic hand). We group the effects of base
pose uncertainty at two levels: Level 1 - the base pose
uncertainty is considered only for mobile base motions and
not translated to manipulator motion and grasping task; Level
2 - the base pose uncertainty is translated to manipulator
motion. Our work considers uncertainty effects at both Level
1 and Level 2.

Previously, we designed a Hierarchical and Adaptive Mo-
bile Manipulator Planner (HAMP) (Pilania and Gupta, 2014)
that plans for both the base and the arm in a judicious manner
- allowing the manipulator to change its configuration au-
tonomously (arm reconfiguration) when needed if the current
arm configuration is in collision with the environment as
the mobile manipulator moves along the planned path. The
underlying core-sub-planners were sampling based, one for
the mobile base (in base pose space) and the other for the arm
(in the arm configuration space), coupled in a loose manner
(see Section III). This work did not consider uncertainty.

Our initial foray in incorporating uncertainty within
HAMP framework was reported in Pilania and Gupta (2015a)
and the resulting planner was called HAMP-U. It considered
only Level 1 uncertainty in a limited way - it assumed that the
robot is at the mean position (of belief, represented by uncer-
tainty ellipse) and checked for collision from mean position
to mean position between two belief nodes. So if the base
deviates from the mean position during execution, collision
may occur. Although HAMP-U helped in generating paths
that were somewhat safer (less likely to collide) than those
generated by HAMP, it was not adequately safe (a planned
path for scenarios requiring frequent arm reconfiguration
steps still has greater than 40 % chance of collision).

In this paper, we extend HAMP to comprehensively in-
corporate base pose uncertainty and its effects on the arm
motion (i.e., both Level 1 and Level 2) thereby leading
to safer paths for the entire mobile manipulator. We call
the resulting planner HAMP-BUA where, BUA stands for
Base pose Uncertainty and its propagation to Arm motions.

At the base level, it constructs a tree (in base pose space)
using efficient localization aware sampling and connection
strategies and propagates base pose uncertainty similar to
Pilania and Gupta (2017) subjected to the collision prob-
ability threshold along the path and uncertainty threshold
at goal. At Level 2, it searches for the reconfiguration
paths along the planned base path segments by considering
the effects of base pose uncertainty on the arm motions.
The search for arm reconfiguration path in the arm C-
space needs to explicitly incorporate the base uncertainty
and the structure of HAMP lends itself to incorporating
this uncertainty nicely via collision-probability constrained
(CPC) planning approach for a fixed base manipulator with
base pose uncertainty (Huang and Gupta, 2009). This CPC
search is carried out at bases poses where the current arm
configuration leads to collision if the base moves along a
given edge.

It is important to note that incorporating Level 2 un-
certainty requires embedding uncertainty related computa-
tions at different stages of path planning (placing samples,
connecting them, etc.), which in turn requires costly op-
eration of 3D collision checks, thereby greatly increasing
the computation cost of the resulting planner. This is, we
believe, one of the reasons, why planning under uncertainty
for mobile manipulators largely ignores the manipulator and
researchers simply choose to go with 2D planning for mobile
base. Designing a reliable mobile manipulator planner is
difficult to realise for real time applications unless one
addresses the issue of extensive computations involved with
mobile manipulator planning. And the real time aspect is
particularly important, especially in unknown environments,
which involves repeated and interleaved re-planning and
exploration (with sensors) of the environment.

HAMP already avoids unnecessary 3D collision checks by
first checking the 2D projected footprint of the base against
the 2D costmap (obtained by projecting 3D range data from
sensor up to a certain height), and only if it is collision-free,
then a 3D collision check for the arm is performed. How-
ever, since incorporating Level 2 uncertainty significantly
increases the number of collision checks needed, this is not
enough to reduce the computation time and we need to find
additional efficiencies.

One way is to look at next level, i.e., after doing collision
checks for the sampled base point, do we really need to
retain all the points (nodes) or the local paths (edges)
connecting two points. A good decision at this level (before
connecting the sampled point to the graph or tree) could
help us improve the planner run time. In our previous work
(Pilania and Gupta, 2015b, 2017), we demonstrated that
localization aware sampling (LAS) and connection (LAC)
strategies can be used to eliminate the nodes and the edges
which do not contribute toward better localization. LAS
puts more samples in regions where sensor data is able to
achieve higher uncertainty reduction while maintaining an
adequate number of samples in regions where uncertainty
reduction is poor. While LAC first connects the new sample
to a nearest node chosen based on an uncertainty metric

and then the connections to other neighbouring nodes are
rewired only if the new path to that node reduces the
uncertainty. Our experimental results with a mobile robot (in
2D and no manipulator) showed that by using these smart
strategies, the planning time can be reduced significantly with
little compromise on the quality of path. Therefore, it was
expected that the savings in planning time will be even higher
for mobile manipulator, since the base cost of a 3D collision
check is significantly higher (as we show in this paper)
and smaller number of nodes and edges at the base level
saves subsequent searches at the arm planning level. These
strategies fall in the category of efficiency improvement at
Level 1 and are incorporated within HAMP-BUA.

Overall, then HAMP-BUA incorporates following key
components that result in safer paths that are efficiently
searched for:

a) it propagates uncertainty from start to goal at base
path search phase and uses collision probability
for base path segment (edge) validation (Level 1

uncertainty)

b) it considers effects of base pose uncertainty while
planning for arm motions (Level 2 uncertainty and
efficiency)

c) a localization aware sampling strategy at sampling

stage that results in fewer samples with little degra-
dation in path quality (efficiency at Level 1), and
d) a localization aware connection strategy at con-
nection stage that results in fewer edges without
degrading performance (efficiency at Level 1)

No other existing mobile manipulator planner considers
base pose uncertainty as comprehensively as HAMP-BUA
does, and it results in significantly improved collision safety
of the planned paths. Components a) and b) are algorithmic
improvements on HAMP-U (Pilania and Gupta, 2015a) in
incorporating uncertainty considerations at Level 1 and Level
2 and deal with safety. While HAMP-U did consider base
uncertainty propagation, there were no collision probability
constraint incorporated in the search process, even for the
base. Similarly, the CPC-PRM was reported in an earlier
conference version for a fixed base manipulator (Huang
and Gupta, 2009). Our HAMP framework makes it possible
to apply CPC-PRM notion over entire mobile manipulator
motion plans from start to goal. Components ¢) and d) that
deal with efficiency at Level 1 have been published before
(Pilania and Gupta, 2015b, 2017), it was in the context of a
mobile base in 2D; incorporating them within the mobile
manipulator case is novel. LAS is modified for its use
with planar range sensor (previously it was introduced for
beacons) that involves additional ray tracing computations
while LAC is augmented to suit the path search and tree
expansion procedures of HAMP-BUA, i.e., new connections
are made only if additional requirements of reconfiguration
paths and collision probability thresholds are satisfied (see
Section IV-C). Avoiding any one of the above components
leads to degradation of either efficiency or robustness as
we clearly show in our simulation results. For example,

if a) and b) are not considered, it leads to paths that
are highly likely to result in collision when executed; if
¢) and d) are not considered then the mobile manipulator
motion planning under uncertainty simply becomes much
less efficient, especially for real applications.

We evaluate HAMP-BUA in known environment and show
that it finds a safer path as compared to other variants where
uncertainty is not considered at different levels, for example,
not incorporating base uncertainty on manipulator plans, not
respecting collision probability threshold along the edges. We
also show that variants of this planner that do not use our
localization aware sampling and connection strategies will
take longer to find the same quality of path.

Furthermore, we incorporate HAMP-BUA within an in-
tegrated and fully autonomous system for end to end mo-
bile ! pick-and-place tasks in unknown static environments.
The mobile manipulator is equipped with a Kinect sensor
mounted on the base (provides an area scan depth map)
and a eye-in-hand Hokuyo line scan sensor (mounted on
the wrist of the arm with the last joint being used to
obtain a area scan depth map) and uses these sensors to
explore the environment. A key aspect of our integrated
system is that the planner works in tandem with base and
arm exploration (view planning) modules that explore the
unknown environment. Note that unlike other implemented
mobile manipulator planners, we assume unknown areas of
environment as obstacles and not free and a region must
be scanned free before the robot will move there. HAMP-
BUA is central to this problem and can not be replaced by
any other planning scheme. This is because each planning
module of the system must consider uncertainty so that the
paths are safe to execute. Therefore, a planner that does not
consider uncertainty can not be used here. We chose this
problem as it is considered a core sub-problem in service
robotics and it is a first step toward putting theory into
practice, and demonstrates the competence of HAMP-BUA
planner.

We believe that our integrated and autonomous system
scores many firsts: a) its competency is far superior to
that of the existing integrated planning systems in that it
explores the unknown environment while considering the
unknown regions as obstacles, picks the object (once the
object is deemed to be in the known region) and then
further explores the environment with object in hand and
places it at target location only after the place location is
deemed to be in the known free region, b) it combines two
different exploration schemes into one - uses frontier based
exploration for the base and information gain maximization
(in workspace) based exploration technique for the arm, c)
it integrates scans from multiple sensors and then uses them
for base and arm view planning, and finally d) in addition
to above, as a working system, it integrates several modules
- Octomap based environment representation, view planning
for exploration, HAMP-BAU motion planner that accounts

The world “mobile” emphasizes that the mobile manipulator is required
to move from one location to another.

for base pose uncertainty and it effects on the arm motion,
pick-and-place pipeline, localization, motion execution and
online monitoring.

II. RELATED WORK

In this section, first we review the related work on mo-
bile manipulator planning under uncertainty, and then we
consider the work concerning an integrated and autonomous
systems that uses mobile manipulator for some tasks (for
example, pick-and-place) in unknown environment.

A. Mobile Manipulator planning under uncertainty

Most of the previous work (Tan and Xi, 2001; Tanner and
Kyriakopoulos, 2000; Yamamoto and Yun, 1994; Yang and
Brock, 2010) on mobile manipulation mainly deals with the
coordination of the mobile base and the manipulator motion
for following a given end effector trajectory. In motion
planning related work, there are two different approaches,
one (Berenson et al., 2008; Hornung et al., 2012; Marder-
Eppstein et al., 2010; Scholz et al., 2011) that folds the arm
to some safe home configuration and plan for a 2D footprint
of the mobile manipulator in a projected 2D environment
representation. Hornung et al. (2012) uses a multi-layered
2D representation of both the robot and the environment but
still the planning is carried out in 2D. While the second
approach (Gochev et al.,, 2012; Pilania and Gupta, 2014;
Vannoy and Xiao, 2008) is to reconfigure the arm if the
current arm configuration is in collision with the environment
as the mobile manipulator moves along the planned path. In
second approach, there can be two possibilities, i.e., execute
arm and base motions sequentially or continuously. In the
latter, it is generally difficult to ensure tight error bounds on
the mobile base that are comparable to those for the arm
and hence synchronizing controllers between the two can be
difficult. Therefore, it is quite reasonable to execute arm and
base motions sequentially as in Pilania and Gupta (2014).
None of the above mentioned planning schemes deal with
uncertainty.

The uncertainty typically originates from three sources:
(i) motion uncertainty - uncertainty in a robot’s motion
often caused by factors such as wheel slippage, imperfect
motion model, (ii) sensor uncertainty - uncertainty in its
sensory readings, and (iii) map uncertainty - uncertainty
in the environment map or imperfect locations of features
(information sources) in the environment. Partially observ-
able Markov decision process (POMDP) (Kaelbling et al.,
1998) is a general mathematical framework to deal with
motion and sensing uncertainty, however due to its significant
complexity, solving realistic problems with large state spaces
remains a challenge, even though progress has been made
on the efficiency issues of these approaches (Bai et al.,
2014; Kurniawati et al., 2012, 2009; Pineau et al., 2003).
A class of methods that carries robot state and associated
uncertainty is an approximation to POMDP. Among them,
a sub-class (Bouilly et al., 1995; Fraichard and Mermond,
1998; Lazanas and Latombe, 1995) assumes the presence
of landmark regions in the environment where accumulated

motion uncertainty can be “reset”. Another sub-class (Bry
and Roy, 2011; Huang and Gupta, 2008; Lambert and
Gruyer, 2003; Melchior and Simmons, 2007; Prentice and
Roy, 2009; van den Berg et al., 2011) uses sampling-based
methods (graph-based and tree-based) where uncertainty is
propagated from start to goal. These methods are mainly
demonstrated for mobile robots or UAVs and not directly
applicable to mobile manipulators.

There are other works (Missiuro and Roy, 2006) that
deal with mapping uncertainty. These approaches could be
combined with our HAMP-BUA to incorporate the additional
map uncertainty that would arise in the sensor fusion process
due to base pose uncertainty.

B. Mobile manipulator based autonomous systems in un-
known environment

Please note that individual exploration (view planning
algorithms) techniques for either base or the arm are not
the focus of this section. There is huge literature on that
and a good review can be found in Torabi (2011). Here
we review the related work on integrated and autonomous
systems that use mobile manipulator for some application
in unknown environment. Note that we consider unknown
regions of the environment as obstacles and not collision-free
regions (which can clearly be detrimental) as the assumption
in Lehner et al. (2015). Furthermore, it does not use view
planning to explore the environment. It just incorporates the
sensor readings (from a 3D sensor mounted on the base and
not acting as eye-in-hand) as the mobile manipulator moves
along the path that follows end-effector trajectory. While it
is true that in certain cases, if the environment is engineered
to be free of obstacles, indeed one can make the assumption
that unknown space is free. But in most environments (for
example, consider a helper robot in an indoor environment
with chairs and tables or hallways in buildings where there
can be pillars in the middle of the open spaces), assuming
unknown as free will lead to collisions, particularly for the
arm - it may work just for the base because the planar
lidars often mounted on the base will scan the unknown
region in front before the base moves into the region, but
it will not work for the manipulator since it can move into
regions which have not been scanned by the sensor (Yu
and Gupta, 2001). Dornhege and Kleiner (2011) searches
for an object in the unknown environment using a planar
range sensor mounted at end-effector but mobile base was
fixed in their experiments. More recently, the winning entry
to the Amazon Picking Challenge successfully performed
several pick and place tasks and is described by Eppner
et al. (2016). However, the task was quite constrained and
several key choices were made to solve the specific task.
The base motion was limited in that it was used simply
to achieve a specific end effector pose, the environment
was assumed known, and there was virtually no motion
planning involved, with arm motions generated from pre-
defined sequences of joint and task space controllers and
on-line monitoring was used to guide task execution. The
system proposed by Torabi and Gupta (2012a,b) is closer in

Table q,=@q".q™

Fig. 1. A schematic illustrating the planned mobile manipulator path IT6"
given by HAMP algorithm. Please see text for explanation. This figure is
taken from Pilania and Gupta (2014).

spirit to ours in that it also integrates view planning and path
planning for autonomously building a 3D model of an object
in unknown environment. However it considers a completely
decoupled approach for mobile manipulator planning and
moreover, uncertainty is not considered at all. In fact, the lack
of uncertainty consideration and the resulting plan failures
in this system were a key motivation for us to incorporate
uncertainty and hence the genesis of HAMP-BUA. There is
lot of work related to environment exploration and mapping
both in 2D and 3D either using mobile base (Stachniss et al.,
2005) or UAVs (Shen et al., 2012). However, we have not
come across any work where mobile manipulator is used to
explore the unknown environment and achieve some tasks
(for example, mobile pick-and-place).

III. BACKGROUND INFORMATION - HAMP ALGORITHM

Figure 1 schematically illustrates HAMP algorithm. In the
figure, blue dots correspond to base pose nodes, the red
segments are the base edges, and light purple ellipses (small
and big) corresponding to each blue dot is the manipulator C-
space. Small purple ellipses with one white dot indicate that
the manipulator configuration, corresponding to the white
dot, is free along the base edge (to the next base node)
and no manipulator planning was required. Three red color
dash lines denote the physical gates (overhead view). The big
ellipses show where manipulator planning was done, with the
manipulator roadmap shown with its nodes and edges inside
each ellipse. For the first three ellipses, the manipulator
configuration at each base node just before the gate was in
collision along the edge (as the mobile manipulator moves
through the gates) and hence the roadmap was built and
searched for a path and the sequence of light green edges
shows the path. The manipulator moves along this path to
the end configuration, which is, by construction, collision-
free as the mobile manipulator moves across the gate to the
next base node. The fourth big ellipse (at base goal pose)
shows a reconfiguration step to the goal configuration of the
manipulator.

Because of the hierarchical and adaptive approach, the
nature of mobile manipulator path will have a specific
structure as shown in Figure 1. We call this type of specific
mobile manipulator path as an H-path. It consists of a set of
mobile base poses (blue dots) and for each base pose, there
is a corresponding manipulator reconfiguration path (white
dots connected via light green edges).

IV. THE HAMP-BUA ALGORITHM
A. Problem statement

We use ¢ = (¢%,¢™) in Cpp, the C-space of the
mobile manipulator, to represent i* mobile manipulator
configuration, where ¢* = [z,y,0] € C,, the C-space of
the mobile base, is the base configuration (also called base
pose) and ¢" = [01,0a,.....,04) € C,,, the C-space of
the d degree of freedom manipulator, is the manipulator
configuration. Cy,, . is the set of all collision-free base poses
and C},,, is the set of poses resulting in collision with
obstacles. For a given base pose, 7, C, ree denotes the set
of free manipulator configurations (for simplicity we omit the
reference to the corresponding base node ¢? in the notation)
and C,,,,. denotes the set of manipulator configurations that
are in collision with obstacles.

Given the start ¢, = (¢%,¢") and goal ¢, = (¢}, q}")
configurations of the mobile manipulator as inputs, the
objective (output) of our HAMP-BUA algorithm is to find
a collision-free H-path II™ that respects collision probabil-
ity threshold (CoLLProBTH) along the path and base pose
uncertainty threshold (GoaLUNcTTH) at goal. Recall that H-
path comprises sequential motions of base and arm, i.e., base
moves with manipulator in static configuration, followed by
a reconfiguration step where manipulator moves while base
remains static.

B. General information

The algorithm operates on a set of nodes V' and edges E,
that define a tree in C},,. Each node v € V has a base pose
v.¢%, a manipulator configuration v.¢™, base pose estimate
covariance v.Y, a parent node v.parent, localization ability
v.loc and reconfiguration path v.RexmsV@] corresponding
to child node v,q;. The base pose covariance prediction
is implemented by a PROPAGATE(e,Y) routine that takes
as arguments an edge and a covariance matrix at starting
node for that edge, and returns a covariance matrix at the
ending node. Routine LoCALIZATIONBIASEDSAMPLE() outputs
a random sample and its “localization ability”. Localization
ability of a sample is essentially a metric that reflects the
sensor’s ability to gather information were the robot to be at
the sample point and is not the actual localization uncertainty
at the sample. It is computed as the normalized difference
of assumed covariance matrix at a sample point and the
covariance matrix obtained after incorporating information
gain (sensor readings). For conceptual ease, reader can view
this as an efficient sampling scheme and details are in Pilania
and Gupta (2015b). Earlier, LAS was introduced for beacon
type of sensors. In this paper, we use the modified version
which works with planar range sensor (for example, Hokuyo)

Algorithm 1: HAMP-BUA Algorithm

1 v.¢° == ¢% v.g™ = q7; 0.2 ;= X,; v.parent := {;
’U.lOC = t?“(M), U.RPATHS[Uadj] = @

2 Vi={v}; E:={}

3 while ! TneUr do

4 if RNG(0,1) < GoaLBIas then

5 | (¢Pana> —) = SampLEBASEGOAL(q))

6 else

7 | (4na»la) := LoCALIZATIONBIASEDS AMPLE()

8 Viear == {NEAR(V, ¢%4,0) }: Srana :==0

9 for all v,,.q, € V,ear do

10 near = CONNECT(Unear-q°, @2 yna)

11 if CoLLISIONFREE2D(€,,¢4,-) then

12 %" :=PROPAGATE(€pcqars Unear-2)

13 if tr(YX) < tr(Z,and) or tr(X,qnq4)=0 then
14 Unearest = Unears €nearest ‘= €near

15 Yrand = X'

16 if tr(X,and) # 0 then

17 v o= {qﬁand’ —, Xrands Unearest, L@, _}

18 (g, ™) :=SEARCHRPATH(Upcqrest, V)

19 if 7™ # () then

20 cp = COMPUTECP(vneaTesta €nearest qﬂw)
21 if ¢cp < CoLLProBTH then

22 if goal sample then

23 if t7(X;qnd) < GoaLUNCTTH then
2 if RPATHATGOAL(q)¢,,» ¢;') then
25 | return H-path I1°™

26 Continue (go to step 4)

27 Continue (go to step 4)

28 ’U’.qm = %Tém /Uneaf,«est.RPATHS[v/] =g
29 V=V Uv; E:=FEUencarest

30 if node v’ is added then

31 for all v,car € Viear \ Unearest do

32 encar := CONNECT(V'.q°, Vpear-q®)

33 if CoLLISIONFREE2D(€,¢4,-) then

34 Y. :=PROPAGATE(Epcar, v'.2)

35 if tr(X') < tr(vneqr-X) then

36 (g ™) :=SEARCHRPATH(V', Upeqr)
¥ if 7™ # () then

38 cp = ComPUTECP(V', €pears 4i%y)
39 if ¢cp < CoLLPrOBTH then

40 Uparent =Parent(Vpeqr)

41 Vnear={—, @b, 2 0"y —, —}
42 UI.RPATHS[U"““'T =qm

43 E=E\(Upm’ent7 Unem’)uenear
44 UPDATETREEBRANCH (U, ¢47-)

and the modification involves additional ray tracing compu-
tations. The trajectory between two states can be computed
by routine Connect(). In our case, both simulation and real
experiments assume holonomic robot to demonstrate our
planners. However, if the system dynamics requires nominal
trajectory and stabilizing controllers (which is beyond the
scope of this paper) then it can be accommodated in this
routine.

We also require the following routines: Near(V,v.q%)
returns every node within some ball centered at v.¢® of radius
p o (log(n)/n)*/%" where n is the number of nodes and d®
is the dimension of (', (See Karaman and Frazzoli (2011)).
Note that Near() uses Euclidean metric in C. RNG() is a
random number generator that generates a number distributed
uniformly over an interval.

C. Algorithm description

The HAMP-BUA algorithm is described in Algorithm
I. The tree is initialized with a single node with base
pose ¢°, manipulator configuration ¢, covariance Y, and
its localization ability ¢r(M) (trace of matrix M) from
lines 1-2. Note that the localization ability of a sample is
stored at the node and this information will be used by our
localization aware sampling strategy and not anywhere else
in the algorithm. M is a hypothetical covariance matrix (we
use an identity matrix).

At each iteration of the while loop, the tree is updated by
adding a new sample. If the bias is not toward goal (line 6), a
new base pose qfan 4 18 sampled using our localization aware
sampling strategy (line 7) and then connected to the nearest
node. To connect the new sample to a nearest node and other
neighbouring nodes (rewiring), we use our localization aware
connection strategy (Pilania and Gupta, 2017). The nearest
node is chosen based on uncertainty metric and not distant
metric as described from lines 8-15. For each neighbouring
node within a ball, the uncertainty is propagated from it to the
new sample given that the corresponding path is collision-
free. At this stage only 2D collision checks are performed,
i.e. base footprint is checked with 2D representation of the
environment. The neighbouring node which gives minimal
uncertainty at the new sample is selected as nearest node.

The connection from nearest node to the new node v’ is
made only if the local base path (€,,¢qrest) cONnecting nearest
node and new node satisfies two conditions: a) there exists
a reconfiguration path at nearest node such that the resultant
manipulator configuration is collision-free as the mobile
manipulator moves along the local base path, b) the collision
probability along the local base path is below the given
threshold. This is explained from lines 16-29 (excluding
lines 22-27 which are for goal sample and explained later).
Note that the dashes, for example in line 17, represent
that there is no change in the corresponding variables. The
reconfiguration path condition is checked in lines 18-19
where a routine SEARCHRPATH(), described in Algorithm 2,
searches for a reconfiguration path that considers base pose
uncertainty. This is where core of Level 2 uncertainty comes
into play. While the second condition is checked in lines 20-

Algorithm 2: (¢, 7"") = SEARCHRPATH(n, n’)

Input: nodes n,n’ along an edge e, ,,/

Output: reconfiguration path 7" at node n with n.g™
as start and ¢, as goal such that g, is
collision-free along an edge e,

10 = (n'.q*,n.q™)

2 if CoLLisioNFReE3D(e,, .7) then

3| g, < n.g™ and 7 {n.q™}

4 else

5 goal™ := ComPUTEARMGOALS(n, 1/, Koaous)

6 while ! ArvPLanineTiveUr and ! ToveUr do

7 Search for a manipulator path from n.q™ to one

of the goal configurations in goal™ using a
planner that considers base pose uncertainty.

8 7™ :=LazyCPC-PRM(n.q%, n.2, n.q™,goal™[i])
9 g, —goal™[i]
10 return (g, ™0")

Algorithm 3: cp = ComputeCP(n, e, q/",,)

Input: node n, edge e, manipulator configuration g,
Output: collision probability cp along edge e
1 Uniformly sample k particles from Gaussian
distribution with mean n.¢® and covariance n.Y such
that weight (probability) of i*" particle is w;
2 while ¢ < k do
3 Compute collision status ¢; by simulating the
actions along e starting at i** particle instead of
n.q® with manipulator in configuration ¢, . Note:
collision free (¢; = 0) or in collision (¢; = 1).
4 ep:=cp+ (¢ X w;)

21 where a routine CompuTECP(), described in Algorithm
3, computes the collision probability of the mobile base
motion along the local base path with manipulator in last
configuration of the reconfiguration path. This is where core
of Level 1 uncertainty comes into play. If both the conditions
are satisfied then the information is updated at nearest and
new nodes (line 28) and the new node v’ and corresponding
edge are added to the tree (line 29).

If the new node v’ is successfully added then the HAMP-
BUA algorithm rewires the connection to other neighbouring
nodes, i.e. if the new path to a neighbouring node via new
node gives less uncertainty then the new path is retained
(edge connecting new node to a neighbouring node is added)
while the edge connecting a neighbouring node to its parent
node (in the old path) is deleted. The rewire connection from
a new node to a neighbouring node is made only if following
conditions are satisfied: a) new path is less uncertain, b)
there exists a reconfiguration path, and c) the collision
probability is below the threshold. The rewire connection
procedure is explained from lines 30-44. The first condition
is checked in lines 34-35 while the other two conditions

are checked in lines 36-37 and lines 38-39, respectively. If
all the conditions are satisfied then rewiring is done from
lines 40-43. After rewiring a neighbouring node, the tree
branch from that node onwards is updated using a routine
UppATETREEBRANCH(). This includes reconfiguration paths,
collision probability checks and uncertainty propagation (line
44).

If the bias is toward goal (line 4), then HAMP-BUA tries
to connect the base goal pose to the tree. The chance of
this happening is 5% as we use GoaLBias = 0.05. Same
treatment is carried out to this goal sample up to line 21,
i.e., collision checks are performed, reconfiguration path is
searched and collision probability is checked. Thereafter,
HAMP-BUA ensures that the uncertainty achieved at base
goal pose is below the threshold (line 23). Note that be-
cause of reconfiguration steps along the path, the achieved
manipulator configuration at base goal pose would be dif-
ferent from the desired one ¢g". As a result of that routine
RPATHATGOAL() is used to reconfigure the manipulator to
qq'- If above conditions are satisfied then H-path is returned
else the while loop continues till the permitted time to
compute the path is over.

D. Reconfiguration path

The reconfiguration path search is implemented in
SeEARcHRPATH() which is described in Algorithm 2. This
routine is similar to the one that we defined for HAMP
in Pilania and Gupta (2014) except one modification, i.e.,
instead of using a traditional manipulator planner, we use the
Lazy-CPC-PRM algorithm (explained below) that considers
base pose uncertainty. In brief, if the current manipulator
configuration is collision-free along the edge then reconfig-
uration step is not required (lines 1-4), else collision-free
(along edge) manipulator configurations are searched using
a routine CoMPUTEARMGOALS(). This routine is different from
HAMP in the sense that the CoLLisSIONFREE3D() is now
collision probability constrained. Then Lazy-CPC-PRM is
used to plan a path from current manipulator configuration to
any of the configurations computed by CoMPUTEARMGOALS().

In routine RPATHATGoAL(), we do not need to search a
manipulator configuration to plan a path for as we already
know that the manipulator needs to be reconfigured to g;".
Therefore, Lazy-CPC-PRM is used to plan a path from
current manipulator configuration to ¢g".

We give a brief overview of the method, for details please
refer to Huang and Gupta (2009). Lazy-CPC-PRM, uses a set
of particles to represent the uncertainty where each particle
represents a base pose associated with a weight, which
indicates the likelihood of this particle being the true base
pose. A path for the manipulator is no longer simply either
in-collision or collision-free, but is associated with a colli-
sion probability. Lazy-CPC-PRM constructs a probabilistic
roadmap (PRM) for the manipulator, formulates the query
phase as a search for a shortest path with the added constraint
that the collision probability is lower than a user defined
threshold. The resulting path search problem is called the
collision probability constrained shortest path problem (CPC-

SPP), and the resulting framework, lazy collision probability
constrained PRM or Lazy-CPC-PRM. Recall that standard
lazy algorithm (Bohlin and Kavraki, 2000) first searches for
a shortest path over the roadmap without considering their
collision status. Then, the path is verified, i.e., checked for
collision. If it is collision-free, success is reported, otherwise,
there must exist an edge along the path that is in collision.
This edge is deleted from the roadmap and the shortest path
algorithm is applied again over the modified roadmap to
acquire an alternative path for verification. However, this
standard lazy algorithm is not applicable to CPC-SPP. Since
the edges are now associated with collision probabilities,
if the collision probability of a path is higher than the
threshold, it does not necessarily mean that there must exist
an edge along the path that violates the collision probability
constraint. Hence, one can not simply remove an edge from
the graph and search for an alternative path as in the classic
Lazy-PRM case. Lazy-CPC-PRM combines a k-shortest path
algorithm (Hershberger et al., 2007) with a label setting
algorithm (Dumitrescu and Boland, 2002) - standard for
constrained shortest path search - to get the next shortest
path, resulting in significant efficiency.

E. Collision tests

3D collision checks are performed in routines
SEARCHRPATH(), RPATHATGOAL() and CoMPUTEARMGOALS().
Our way of performing 3D collision checks is different from
full-blown checks for mobile manipulator: first we check the
2D footprint of the mobile base with 2D representation of
the world, if that is collision-free then only the manipulator
model is checked with 3D representation of the world (not
the mobile manipulator model). Both CoLLisioNFRee2D() and
CoLLisioNFREE3D() use the collision probability threshold
to decide on collision-free or in collision. The specifics of
collision checks and world representation are described in
later section.

FE. Collision probability

Collision probability is an important metric that tells about
the vulnerability (to collisions if robot deviates) of a path,
which in turn helps to select a safer path. This is even
more important for a mobile manipulator planner where
manipulator needs to reconfigure (in case of HAMP, this
reconfiguration is at a finite set of base locations). A slight
base deviation can lead to collision (of the manipulator
with the obstacles in the environment) even in less cluttered
environment.

There are a few ways to compute the collision probability
(along an edge with uncertainty ellipses at start and end
vertices): (i) Huang and Gupta (2008) samples particles from
both the ellipses and perform collision checks along local
paths obtained from “all such pairwise paths”. If n particles
are sampled from each ellipse then there will be n? paths to
check. Therefore, the complexity is of the order of O(n?),
(i) van den Berg et al. (2011) uses ellipse transformation
approach and it was for the simple case of a disc robot, (iii)
monte-carlo approach - where the edge is discretized and

for each point along the edge the corresponding uncertainty
ellipse is obtained. For each ellipse, particles are sampled
and then collision status is checked at each particle. That
gives the collision probability of one ellipse. For an edge,
all the collision probabilities along the discretized edge are
multiplied (hence complexity of O(kn) where k is the num-
ber of discretized points along the edge, and n the number
of particles as above), (iv) Agha-mohammadi et al. (2014)
uses action simulation approach, i.e., the same sequence of
actions (used to travel along an edge) is simulated at each
particle obtained from uncertainty ellipse at start vertex. The
collision probability is then sum of weights corresponding to
the particles that result in collision. In our case, we compute
the sequence of actions as the rotation required to orient the
robot along the edge, followed by the translation required
to reach the other end of the edge. However, in general,
there could be a non-straight line path between two nodes,
in that case the corresponding sequence of actions should be
considered. The complexity of this approach is of the order
of O(n).

Since first and third approaches are computationally more
expensive, as indicated by their respective complexity as
mentioned above, and especially for a mobile manipulator
because of 3D collision checks this may result in quite long
computation times. The second approach was applied to the
simple case of a disc robot. Therefore, we use the fourth
approach. The collision probability computation using this
approach is described in Algorithm 3.

V. SIMULATION RESULTS FOR HAMP-BUA

In this section, we evaluate our planner in known environ-
ments and provide simulation results. Our implementation is
in C++ under linux and runs on a Pentium dual core 2.5
Ghz computer with 4GB memory. From the simulations, we
want to demonstrate two things: (i) our planner computes
safer plans for mobile manipulator as compared to the
deterministic case where no uncertainty is considered albeit
at the cost of computational time, and (ii) consideration of
our localization aware sampling and connection strategies
helps to find the same quality of path in lesser time.

To prove the first objective, we compared HAMP-BUA
with its variants where uncertainty is not considered at
different levels. Note that these variants still make use of
our localization aware sampling and connection strategies
(i.e., components ¢, d as stated in Sec I), however, differ
in the consideration of uncertainty along the edges and
on manipulator motions. Below, we briefly describe these
variants.

1) HAMP-BUA(: This variant does not consider the
collision probability along the edges (part of com-
ponent a) and therefore, the corresponding threshold
(CoLLProBTH) is not maintained, i.e., lines 21 and 39
of Algorithm 1 hold true. Also, the effects of base pose
uncertainty on manipulator motions (reconfiguration
paths) are not considered (component b, Level 2), i.e.,
instead of Lazy-CPC-PRM (line 8, Algorithm 2), a
standard manipulator planner, as in HAMP, is used.

Fig. 2. Simulation environment for scenario C: shows a narrow corridor
(overhead view) of width 80cm with a tight round turn, the manipulator
is required to move in the narrow corridor and negotiate the turn while
carrying a 100 cm long stick.

2) HAMP-BUA;: This variant maintains the collision
probability threshold for the base along the edges,
however, the effect of base pose uncertainty on ma-
nipulator motion (i.e., Level 2 uncertainty) is not
considered. Therefore, instead of Lazy-CPC-PRM (line
8, Algorithm 2), a standard manipulator planner, as in
HAMP, is used.

A key reason to compare HAMP-BUA with its two variants,
instead of just HAMP-BUA,, is to show how the planner run-
time increases as we incorporate the uncertainty at different
levels and which component of the uncertainty consideration
contributes what amount of increase in runtime and safety.
We evaluated HAMP-BUA and its variants in 3 different
scenarios with varying level of complexity in simulation
and compared the outcomes. In scenario A, the mobile
manipulator was required to navigate from one side of the
door to the other side while carrying a payload - a 50cm
long stick. In B, the task required passing a 50cm long stick
through a window of 40cm x 50cm. In scenario C (also shown
in Figure 2), the mobile manipulator carrying a stick of
100cm, enters from an open area into a very narrow corridor
of width 80cm, navigates through the corridor and makes
a turn through a very tight round corner and then finally
exits into an open area, requiring frequent reconfiguration
steps along the way. Simulation environments corresponding
to scenarios A, B are available in Pilania and Gupta (2015a).
For each scenario, we ran a planner 30 times to get 30
different paths with in permissible time limit of 180 seconds
and measured for i) the average planner runtime and ii) the
quality (in term of safety) of the computed path, i.e. if this
path is executed then what is the probability that the mobile
manipulator may collide with the obstacles. To compute
the latter, we executed each path 20 times by artificially
generating the noise (10% and 15%) in control commands
and sensor measurements. Therefore, for a planner (in a

TABLE I
COMPARISON OF HAMP-BUA AND ITS VARIANTS (600 RUNS).

HAMP-BUA(HAMP-BUA | HAMP-BUA
T. (sec) ocoll T. (sec) Pocoll T. (sec) %coll
A 8.2 15.0% 11.5 6.6% 31.1 0.8%
B 26.4 53.3% 28.0 45.0% 52.8 6.6%
C 58.5 48.0% 65.0 32.0% 168.0 5.2%

scenario), we monitored the number of times a collision
has occured among 600 runs (30x20). These two properties
are recorded for HAMP-BUA (and its variants) in Table 1.
“%coll” in the table denotes our second property. It tells the
% of times a path results in collision.

From Table I, we observe that HAMP-BUA, takes less
time to plan a path but at the cost of sacrificing path
safety. Paths generated by HAMP-BUA(are highly prone
to collisions. This is expected because at planning stage it
does not respect the collision probability threshold along the
edges and also the effects of base pose uncertainty are not
considered on manipulator motions. As compared to scenario
A, which is relatively a simple environment, the scenarios
in B and C are complex and therefore, increasing collision
risk. As we move toward HAMP-BUA ;, which does consider
collision probability along the edges, the planning time
increases but paths generated by HAMP-BUA; are less prone
to collisions as compared to HAMP-BUA(. Note that colli-
sion probability computation along the edges adds to planner
runtime but then also gives safer plans. For scenario A, paths
are 50% safer (as %coll decreased from 15.0 to 6.6) but that
is not the case with scenarios B and C. For B, not much
can be done with collision probability alone as the important
task (of passing a long stick through the window) is achieved
at base goal pose through reconfiguration path and HAMP-
BUA; does not consider uncertainty on manipulator motions.
While for C, %coll is reduced a lot while the rest can be
achieved by consideration of uncertainty on reconfiguration
paths. Finally, as we move toward HAMP-BUA, we can
observe that the planner runtime is increased by 2 to 4 times
while path safety is significantly improved. The increase in
runtime by that amount is mainly due to Lazy-CPC-PRM, a
manipulator planner that computes reconfiguration paths by
considering base pose uncertainty. Separately, it is known
that Lazy-CPC-PRM takes 2 to 20 seconds to compute a
manipulator path depending on a threshold used there and
the complexity of the environment. And for scenarios A, B
and C, the average number of reconfiguration steps required
were 5, 4, 20, respectively. That explains the increase in
runtime.

Note that all the planners were successful in finding a
path for each scenario (corresponding 30 trials) with in
permissible time limit of 180 seconds, collision probability
threshold of 0.08 and goal uncertainty threshold of 0.4.
We also experimented by lowering these thresholds and
observed that the rate of failure to find a path for HAMP-
BUA increases with the decrease of these thresholds. For
CoLLProBTH of 0.06 and GoaLUNcTTH of 0.32, the failure

HAMP-BUA (LAS) Vs HAMP-BUA2 (uniform sampling)
90

80 =——HAMP-BUA

70 —E—HAMP-BUA2
60
50

40

30

Planning time (seconds)

20

10

0.38 0.4 0.42 0.44 0.46

Trace of covariance matrix at geal

Fig. 3. HAMP-BUA Vs HAMP-BUA; by varying GOALUNCTTH while
COLLPROBTH remains as 0.08 (for scenario A).

attempts (out of 30) were 1, 1, 3 for scenarios A, B, C,
respectively. While for the thresholds of 0.06 and 0.28, the
failure attempts increased to 1, 3, 6 for scenarios A, B, C,
respectively.

To prove our second objective, we compared HAMP-BUA
with its another variant where localization aware sampling
strategy (component ¢) and a part of localization aware
connection strategy (component d) were not used. In HAMP-
BUA3, a uniform sampling is used and the new sample is
connected to the nearest node based on Euclidean distance
and not on uncertainty based metric as in HAMP-BUA.
Note that this variant still makes use of rewiring notion. For
our simulations, we kept the collision probability threshold
fixed (0.08) while varying the uncertainty threshold at goal.
We ran our planner 30 times (for each GoaLUnctTH) and
averaged the planner runtime. The results are provided in
Figure 3 for scenarios A. From the plot, it can be observed
that HAMP-BUA takes less time to plan the same quality of
path as a result of our smart strategies. On the other hand, the
corresponding uniform sampling variant was also successful
in finding a path that respects corresponding thresholds but
take longer to reach there. It is also important to note that as
we decrease the GoaLUNcTTH (looking for safer paths), the
runtime difference between original planner and its variant
increases. Therefore, our localization aware sampling and
connection strategies help to reach toward well-localized path
in shorter time by picking the right choice of samples and
their connections (edges) which is highly useful and needed
for mobile manipulator planning as it involves 3D collision
checks.

A. World representation and collision checks

We use two types of map representation for collision
check for efficiency reasons: a 2D world model (costmap)
and a global 3D world model (collision map). The 2D
world model is obtained by projecting the 3D map up to a
certain height. At this stage, for evaluation of HAMP-BUA
in known environment, it can be assumed that the 2D and
3D maps are known (provided). Later on, when we discuss

pick-and-place tasks in unknown environment, we explain
in detail how these maps are constructed and the nitty-
gritty involved. For efficiency reasons, collision detection
for the whole mobile manipulator is accomplished in a two-
stage process as follows. First, the 2D projected footprint
of the base is checked against the 2D map, and if it is
collision-free then a 3D collision check is performed on the
manipulator only. This strategy helps us to avoid unnecessary
3D collision checks (which can be expensive) without being
overtly conservative.

TABLE II
PARAMETERS USED IN HAMP-BUA.

Parameter name Value
Kaoals 3
ArMGoaLsTiMeUp 2 seconds
ArMPLANNINGTIMEUP 6 seconds
GoarLUnctTH 0.4
CorLProsTH 0.08
DistTH 0.35m
LocAsiryTH 83.3%
6 (Lazy-CPC-PRM) 0.2

B. Parameters and thresholds values

Table II shows the key parameters and their corresponding
values that we used in HAMP-BUA and its variants. A
few of these parameters are visible in the pseudo-code of
the algorithms while rest of them are hidden inside few
routines and previously developed approaches. For example:
ArvGoasTeUr is a part of routine ComMPUTEARMGOALS(),
precise detail of the pseudo-code can be found in Pilania and
Gupta (2014). DisrTH and LocAswuryTH are two thresholds
used in routine LocALIZATIONBIASEDSAMPLE(), our localization
aware sampling strategy. Effects of these two thresholds
are well studied in Pilania and Gupta (2015b). Lazy-CPC-
PRM (Huang and Gupta, 2009) also uses a threshold ()
to compute a manipulator path for fixed uncertain base
pose. Note that GoauUxcrTH and CouPros TH are two different
entities. Parameters CouProsTH and 4, both being collision
probability, differ in their values. This is because the former
is applied along the edges in the base roadmap (or tree) while
the latter is applied to reconfiguration paths in manipulator
C-space. These values are empirically chosen. One example
of GoaUnerTH of 0.4 would be 10 cm (0.1 m) uncertainty
each along x and y axes and 11 degree (0.2 radians) along
base rotation (.1+.1+.2).

VI. INTEGRATED AND AUTONOMOUS SYSTEM FOR
PICK-AND-PLACE TASKS IN UNKNOWN ENVIRONMENTS

In this section, we report an integrated and autonomous
system for mobile pick-and-place tasks in unknown static
environments that uses our planner (in combination with
view planning) to explore the environment and achieve a
task. First, we provide a concise problem statement, followed
by the description of our mobile manipulator system and the
locations of different sensors and then the description of the
system will follow.

Hokuyo sensor
(eye-in-hand)

Fig. 4. The SFU mobile manipulator and mounting locations of different
Sensors.

A. Objective

Given global pick and place end-effector poses, the task
of the autonomous mobile manipulator is to explore the
environment, pick the object once it is in the known region
and then explore the remaining environment (if needed)
with object in hand, to place it at the target location (place
pose). We assume that very small region around mobile
manipulator is known in the beginning but other than that
the entire environment is unknown. In future the grasp would
be decided by the system too but for now we give the grasp
pose.

B. System components

The SFU mobile manipulator model, both in simulation
and physical environment, consists of a powerbot mobile
base, 6 DOF schunk powercube arm mounted on the base,
2-finger schunk gripper, LMS100 2D range sensor placed
in front of mobile base (used for SLAM), Kinect 3D depth
and image sensor mounted on the base, and a light weight
hokuyo 2D range sensor mounted on the gripper (to act as
eye-in-hand) as shown in Figure 4.

1) Why we use 3 different sensors ?: An eye-in-hand
sensor (Hokuyo in our case) is better able to explore the
environment regions that are otherwise occluded for base
mounted Kinect. Since the eye-in-hand sensor can provide
only line scans, therefore, at NBV-A (next best view of arm),
the sensor rotates to make an area scan by collecting all
the line scans during rotation. The second sensor (Kinect) is
added for online monitoring of path execution, however, once
it is there it also acts as an additional sensor for exploring
the environment. This is also required because Hokuyo does
not work well with black surfaces and most of the surfaces

in real environment (RAMP Lab) are black. Kinect as eye-
in-hand sensor (instead of Hokuyo in order to speed up
the exploration) can not sense upto 1 meter distance (near
clipping) and therefore, can not scan nearby regions. The
third sensor, LMS 100 mounted at the front bottom of the
base, is used to localize the mobile base.

C. System architecture description

Our integrated and autonomous system architecture is
described in Figure 5. The only inputs to the system are
global (w.r.t. world frame) pick and place end-effector poses.
For each given pose, the corresponding possible base poses
and manipulator configurations are computed. Note that
at current stage the collision status of these base poses
and manipulator configurations can not be verified as the
environment is unknown. The method to compute a valid
base pose and manipulator configuration corresponding to
an end-effector pose is described in Torabi (2011) and is
briefly as follows. First, a base pose is randomly sampled
from a disk region (bounded by the arm reachability) and
then a given end-effector pose (pick or place) is checked
for reachability from the sampled base pose using inverse
kinematics.

global pick end-effector pose
global place end-effector pose

compute corresponding possible base
poses & manipulator configurations
— —

{(q” ")) i
(
L

Y

/7*\4
»| EXPLORE_A
| EXPLOREA [

arm exploration

Y
—————————»| EXPLORE_B I not 1 &2)
- NBV-B is reached

ix pick base pose is 2. place base pose

reached but object is reached but
not grasped object not placed

objectis If place fails

picked If object
is placed

If pick fail Done

pick fails (exit

Fig. 5. An integrated and autonomous system for pick-and-place task in
unknown environments.

At any instant of time the system can be in one of the
four states: EXPLORE_A, EXPLORE_B, PICK and PLACE.
In the beginning, the system starts in EXPLORE_A. This
module uses eye-in-hand sensor to explore the local region
around the mobile manipulator. Once the local region is
fully explored, the system changes its state to EXPLORE_B.
Broadly, one task of this module is to check for the reachabil-
ity of pick and place base poses. If any of them is reachable
then a path is planned to move the mobile manipulator to
that base pose. Depending on success, the state is changed
to PICK or PLACE. If none of these pick or place base poses
is deemed reachable, then the EXPLORE_B module explores
the environment by reaching to a NBV-B and state is then
changed to EXPLORE_A. If at some point of time, the state
is changed to PICK, i.e., pick base pose is reached, then the

EXPLORE_A

create local Voxelmap

Y S
. 4—/ global
> update Voxelmap \Octomap -« o
— |
. . I
If (frontiers > FrontiersTH) |
‘ compute NBVs-A Fﬁ g I
& !
E} |
. @ |
plan for NBV-A using [
Lazy-CPC-PRM Iffails then try | & |
- another NBV-A | &
If planning |
successful
|
execute arm plan y I
‘ P ‘ delete Voxelmap
(exit) I
Y I
after scanning . . |
scan using eye-in-hand — — — — P Hokuyo scans

Fig. 6. EXPLORE_A module of the system.

EXPLORE B | check current 0% ‘ check pick base pose reachabllny}—‘Wb
base pose

' If reachable
{' ' If already at y
! pick base pose ;
If object not™ & ‘ plan using HAMP-BAU W
picked up If successful H

execute MM plan ‘ E

‘check place base pose reachability| : ot ™

r reachable

1| check current
1| base pose

If already at '

S place base pose - H
If object picked ‘ plan using HAMP-BAU W

but not placed | — *If successful H

: @ne:PLACE :

' \\W(exit) » execute MM plan ‘ '

@D m@. ----------- P‘ compute NBVs-B =

o v

‘ plan using HAMP-EAU If fails then try / lobal \
If planning another NBV-B gova
successful ctomap

then do 2D exploration

/state EXPLORE. /D |

_ (exit) execute MM plan ‘

after scanning ‘ scan using base 3D sensor)- --------------- »Kinect scans

Fig. 7. EXPLORE_B module of the system.

Sensor Scans & World Representations

Hokuyo scans ------- »>

global

3D Collisi
(includes occupied & unknown area V(used for collision checks)
Kinect scans ==-=-=- » Octomap
—— downprojected 2D
ccupancy grid maj
i 2D OccupancyMap
combine two 2D (used to compute NBV-B)
LMS100 scans ===~ »| SLAM maps into one
2D ¢ grid map

2D CostMap -a— Costmap
(used for collision checks) \\

Fig. 8. Sensor scans and world representations (2D and 3D).

PICK module plans for pick end-effector pose and grasps
the object. If grasping is successful then the state is switched
back to EXPLORE_B to explore the remaining environment
to complete the other part of objective, i.e., to place the
object. As the system explores more and more environment
(using EXPLORE_B and EXPLORE_A), the place base pose
will be reachable at some point of time. Once the place base
pose is reached then PLACE module is invoked to place
the object at target location. The details of these modules
are provided from Figures 6 to 7. We now describe these
modules.

EXPLORE_A (see Figure 6) creates a local Voxelmap, a
discretized grid representation of the 3D workspace as a 3D
bitmap (with free as 0, obstacle as 1, and unknown as 2),
at fixed base pose. Note that the boundaries of Voxelmap
should be with in the reachability of end-effector. The status
(occupied, free, unknown) of each voxel cell in the Voxelmap
is updated by communicating with global Octomap (an octree
representation of Voxelmap). Then the frontiers (free cells
next to unknown) are computed. If the number of frontiers
are below a given threshold then the arm exploration is
aborted which states that the local region around mobile
manipulator is fully explored. If not then arm view planning
is invoked to compute a set of end-effector poses arranged
in the priority order of information gain (which is the
number of unknown voxels in the sensor FOV at the planned
pose). We use MPV (Maximize Physical Volume) based
algorithm for arm view planning as alluded to in Section
II-B. The procedure to compute NBVs-A is as follow: arm
view planning samples valid (IK exists and the solution is
collision-free as well with in joint limits) end-effector poses
and computes the information gain at each sensor pose by
simulating the sensor model and then returns the set of these
poses in the order of high information gain at the top. The
end-effector is then moved to arm next best view (NBV-A)
to take the scans using eye-in-hand Hokuyo sensor. Note that
scans are inserted into the global Octomap and not the local
Voxelmap. Lazy-CPC-PRM is used to plan a manipulator
path for the IK solution of NBV-A as goal. After scanning,
the local Voxelmap is updated and the procedure continues
until the Voxelmap is explored or the maximum number of
iterations are reached.

EXPLORE_B (see Figure 7) first checks, with in the
known region of the environment, if it is possible to move
the mobile manipulator to pick base pose or place base pose.
If the object is not picked yet then the collision status of
previously computed pick base poses is checked. If any of
the base pose is found to be collision-free then HAMP-BUA
is used to plan a path. If the pick base pose is reached
(planning is successful) or the mobile base is already at pick
base pose then the EXPLORE_B module simply switches
the state to PICK. Similarly, if the object is grasped but
not placed, the reachability of a collision-free place base
pose is checked and if successful, the EXPLORE_B module
aborts by switching the state to PLACE. However, if the
planning fails or pick and place base poses are not collision-
free with in the explored region then a base next best view

(NBV-B) is reached to explore the environment using sensor
(Kinect) mounted on the base. Again, the sensor scans are
inserted into the global Octomap. After taking scans, the
state is switched to EXPLORE_A to explore the local region,
this time from a different base pose. To compute NBV-B,
we invoke base view planning where we use frontier-based
exploration (Yamauchi, 1997). The base view planning uses
a 2D occupancy grid map (a discretized grid representation
of the 2D workspace as a bitmap with free as 0, obstacle
as 1, and unknown as 2) to compute NBV-B and this map
comes from a series of steps as shown in Figure 8.

We now explain PICK and PLACE modules which are
pretty standard in grasping domain. PICK module is invoked
once the mobile manipulator has reached a base pose from
where object can be grasped. Previously computed infor-
mation (base poses and manipulator configurations) corre-
sponding to pick end-effector pose (grasp pose) may not be
useful any longer because due to the uncertainty in mobile
base position, the mobile manipulator (basically mobile
base) does not exactly reach the intended pick base pose.
Therefore, either a new manipulator configuration needs to
be searched from the reached base pose or a new valid grasp
pose (and thereby the corresponding reachable manipulator
configuration), with in the close proximity of already given
grasp pose, needs to be computed. In case of latter (grasp
adjustment), we use a simple approach as follows: Recall
that a grasp pose is denoted as p = [z,v, 2, a, 8, 7], pose
of end-effector frame (located in the center of gripper jaws)
with respect to a fixed frame, for example, base frame of
the manipulator. In simulation and real experiment examples,
the new valid grasp pose is computed by varying v while
keeping other 5 parameters same. As mentioned earlier,
this is a very quick and an ad hoc attempt to show the
integrated system. For a valid grasp pose (collision-free IK
solution exists), we also test if its pre-grasp and post-grasp
poses are valid ones as well, which are typically 10 cm
offset (back and up, respectively) from the intended grasp
pose, see Leeper et al. (2010) for detail. Moreover, the end-
effector motions from pre-grasp to grasp and grasp to post-
grasp should be feasible. Once a valid grasp is found, a
path is computed using Lazy-CPC-PRM to reach to the IK
solution of pre-grasp pose and then followed by a straight
line motion of the end-effector from pre-grasp to grasp pose.
For more precise grasping, one can use reactive behaviour
while moving the gripper from pre-grasp to grasp pose or
a force-regulating controller that helps to close the gripper
which takes feedback from tactile sensor in order to safely
grasp an object (Ciocarlie et al., 2010; Leeper et al., 2010).
However, in our implementation, we skip this due to the
lack of tactile sensor in our gripper. PLACE module also
follows the same steps but in reverse order. In future, our
PICK module will be replaced by a systematic approach.
For example, for cases where the object is known and can be
visually tracked (by putting some markers), visual servoing
with end-effector cameras can ensure the robust execution of
grasps by incrementally correcting the position of the object
relative to the gripper. An excellent survey on this subject can

be found in Kragic and Christensen (2003). For cases where
the object and gripper can not be visually tracked, methods
such as Ciocarlie et al. (2010), Chitta et al. (2012), Collet
et al. (2011) can be incorporated. While in the presence
of object pose uncertainty and high clutter, push-grasping
approach in Dogar and Srinivasa. (2010) can be helpful.

D. HAMP-BUA for NBV-B

Note that HAMP-BUA is designed to plan a path from
start to goal (base poses and manipulator configurations).
However, to plan for NBV-B, we just have the goal base pose
but the goal manipulator configuration is not known (neither
required). Still, with minor modification, the planner can be
used to plan a path for the mobile manipulator with NBV-B
as a goal. For the modification, we skip line 24 in Algorithm
1, i.e., the reconfiguration step at goal base pose (NBV-B)
is not needed.

E. Sensor scans and world representations

Figure 8 describes how the scans from different sensors
are inserted and two (2D and 3D) world representations are
formed. Hokuyo and Kinect scans are inserted into global
Octomap (Hornung et al., 2013), a 3D world representation
that maintains occupied, free and unknown regions. From
the Octomap, we get a 3D collision map (a set of occupied
and unknown voxels, all of the same size) and a down
projected (up to a certain height) 2D occupancy grid map.
This occupancy map is further fused with another 2D map
obtained from SLAM module (which uses LMS100 scans
for localization with map resolution of 0.05 m) to get a
single 2D map. The fused 2D map, which shares information
from all the sensors, is then used by base view planning to
compute NBVs-B. We further input this map to the costmap
module (assigns costs based on 2D occupancy grid and a
user specified inflation radius) to get a 2D costmap. Costmap
is an extension of occupancy map where a cost is assigned
to each grid cell. The cost can depend on various factors,
but in our context, it is in inverse proportion to the distance
from obstacles. Inflation radius is a safety distance margin
around the obstacles. The 2D costmap and 3D collision map
are then used to perform collision checks as mentioned in
Section V-A.

VII. RESULTS

First, we separately evaluate EXPLORE_A module which
is a key component of the system. If this module does not do
its job properly then the system may not be able to complete
the pick-and-place task. Thereafter, we provide full-fledged
simulation and real experiment results for mobile pick-and-
place task in unknown environment.

The task was to explore the unknown region within the
boundaries of a local Voxelmap. We carried out 40 trials
and for each trial we used different scenarios ranging from
simple surrounding environment (no obstacles in the Vox-
elmap region) to cluttered ones like table with objects on
it along with walls on other two sides. We set 10 seconds
as maximum permitted time for Lazy-CPC-PRM to plan

TABLE III
EXPLORE_A MODULE TEST IN CLUTTERED ENVIRONMENT.

frontiers Voxelmap NBV-A T. Planning T.
update T. (sec) (sec) (sec)
1 1498 0.0421 3.15 6.76
2 1649 0.0016 4.93 3.63
3 1562 0.6911 3.97 3.50
4 1395 0.2380 4.90 4.21
5 1380 0.5071 434 3.27
6 1226 0.0448 3.97 7.34
7 1191 0.0714 4.79 2.66
8 894 0.7044 4.58 2.20
9 728 0.0098 4.28 6.49
10 491 0.0756 8.74 2.39
11 151 0.4243 14.5 1.28
12 52 0.0427 29.6 1.35
13 24 0.0938 66.1 3.18
14 4 0.1619 - -

Fig. 9. Simulation environment for mobile pick-and-place task. The task
is to explore the environment, pick the object (green colour) and place it
on table located on the other side of the door.

a path and monitored (at each iteration) the number of
frontiers, voxelmap update time, time to compute NBVs-A
and planner runtime. To give a clear picture of how much
time is taken by each component of EXPLORE_A as the
number of iterations approach to the maximum limit, we
provide one trial result for the cluttered scenario in Table III.
From the table, we can observe that the number of frontiers
decreases below threshold with the increase of iterations. It
is also important to note that the time to compute NBV-A
increases drastically as the number of frontiers dropped to
small numbers. This is because to find NBV-A for a small
unknown region requires large number of samples which
in turn requires many simulations of sensor model (ray-
tracing) which is a time consuming step. In our 40 trials,
EXPLORE_A succeeded in exploring the entire Voxelmap
region all the time with in 15 iterations. On an average it
took 11 to 15 iterations to explore the local region.

A. Simulations

We now present simulation results for mobile pick-and-
place task in unknown environment to demonstrate HAMP-
BUA. The simulation environment is shown in Figure 9.
We ran our integrated and autonomous system in this en-

e

A e
e

(ed) (e2) (e-3)

Fig. 10. Continued...

Fig. 11. Continued...

Fig. 12. Simulation test for pick-and-place task in unknown environment to demonstrate HAMP-BUA. (a.1) shows the initial unknown environment and
(0.3) shows the environment after exploration along with object placement. Please see text for description.

TABLE IV
COMPARISON OF SIMULATIONS AND REAL EXPERIMENTS FOR
PICK-AND-PLACE TASK IN UNKNOWN ENVIRONMENT.

Detail Simulations ~ Real Experiments
Total trials 8 2
Total time taken (avg.) 120 minutes 150 minutes

Total execution time (avg.) 100 minutes 116 minutes
Total computational time (avg.) 20 minutes 34 minutes
Total Hokuyo scan time (avg.) 49 minutes 63 minutes

Num. of EXPLORE_A calls 3 4

Num. of NBV-A reached 18 23

Num. of EXPLORE_B calls 4 8

Num. of NBV-B reached 2 3

vironment and the outcomes are provided in Table IV. On
an average our system took 2 hours to completely explore
the environment and completes the pick-and-place task.
However, it is important to note that only 17% of total time
is the computational time while the remaining is motion
execution time (100 minutes) that includes physically moving
the mobile base or the arm, whether it be for executing plans
for manipulator to reach NBVs-A and then scanning using
eye-in-hand sensor, or for base to reach NBVs-B or for pick
and place motions, etc. Of the 100 minutes, 49 minutes were
taken by arm scanning motion execution at NBV-A? while
arm motion execution to reach NBVs-A took 38 minutes.
We believe that CPU is consumed by multiple tasks like
simulation platform (Gazebo, ROS) visualization tool (Rviz,
ROS) and hence slows down the arm motion. On an average,
the system invoked EXPLORE_A 3 times and EXPLORE_B
4 times for a total of 18 NBV-A and 2 NBV-B were reached.
Our EXPLORE B calls also include call to reach pick base
pose or place base pose.

One of the simulation trials is depicted from Figures 10
to 12 and also available in the attached video (Extension 1).
In the figures, cyan colour represents the unknown regions,
green colour represents the obstacles, magenta as Voxelmap
and frontiers are represented by yellow colour. Screenshots
in (a) show the unknown region (bm X 4m X 2m) in the
beginning and the initial known region assumed around the
mobile manipulator. The Voxelmap and frontiers at start are
shown in (a.2). In the beginning, EXPLORE_A module was
invoked to explore the local region and the screenshots from
(b) to (e) show the 2D and 3D environment explored at
different iterations of arm view planning. In total, it took
10 iterations, i.e., 10 NBVs-A were reached, and the region
explored at the end is shown in (e.1) and (e.3). Within the
known region, the pick base pose was reachable, therefore,
a path was planned to reach as shown in (f.1). Screenshots
from (f) to (g) show the execution of mobile manipulator
path. Along the path, the arm reconfigured once as shown in
(f.2) and (f.3). After reaching pick base pose, the grasping
was not possible due to unexplored region around the vicinity
of object, therefore, arm view planning was invoked to clear
the unknown region. (g.3) and (h.1) show the frontiers before
and after arm view planning. The object is grasped in (h.2).

2Recall that the Hokuyo line scan sensor is rotated using the last joint to
get an area scan.

Post-grasping, the mobile manipulator moved toward already
explored region (h.3) as there were few unknown voxels
left. From there, a new NBV-B was searched and a path
was planned (i.1). Screenshots from (i) to (k) show the path
execution. Along the path, arm reconfigured 4 times, also
shown in the screenshots. After reaching to NBV-B, arm
view planning was invoked to explore local region. Frontiers
at different iterations are shown from (i.1) to (m.1) (not all
steps are shown). After local exploration (took 7 iterations),
a path to reach place base pose was found and the object
was placed as shown from (m.2) to (0.2). Finally explored
environment is shown in (0.3).

Fig. 13. Real environment for pick-and-place task. The mobile manipulator
start configuration and object (bottle) are shown in the top figure while the
bottom figure shows the table on the other side of the door where object
should be placed.

B. Real experiments

For real experiments on SFU mobile manipulator, we
used the environment shown in Figure 13 to demonstrate
our integrated and autonomous system for pick-and-place
task in unknown environment. We carried out two trials and
the outcomes are provided in Table IV. As compared to
simulations where the Hokuyo sensor was not sensitive to
black surfaces, the system for real experiments took longer
(150 minutes) to explore the environment, pick the object
and place it at target location. This is because of three key
reasons: a) we moved the arm with slow speed (maximum
speed of 0.05 radians/seconds) for safety reasons due to
some hardware issues with our Schunk arm at the time of
experiments, b) many surfaces in our real environment (our
lab) were black and for that Hokuyo does not work well,

Fig. 14. Continued...

(w.1) . (x.1) (x.2)

Fig. 15. Real experiment for pick-and-place task in unknown environment to demonstrate HAMP-BUA. (a.1) shows the initial unknown environment and
(x.1) shows the environment after exploration. Please see text for description.

thereby, taking more NBVs-A iterations (Kneip et al., 2009),
¢) timing issues associated with insertion of Hokuyo and
Kinect scans into global Octomap. Note that we hid some of
the black surfaces by covering with papers as can be seen
in the screenshots of the environment. Due to issues with
eye-in-hand sensor (Hokuyo), the system took more number
of iterations in a EXPLORE_A call, i.e., in total 23 NBVs-A
were reached. Also, the system took 8 EXPLORE_B calls
that include few of the failed attempts (3), for example, pick
or place base pose was collision-free but the system failed
to find a path with in the permitted time. This also shows
that our system is robust to failure of individual modules as
it tries to revisit the same problem next time in the loop.

One of the trials for real experiment is demonstrated from
Figures 14 to 15. Screenshots in (a) show the unknown
and known region in the beginning. The arm view planning
was invoked at start base pose to explore the local region
surrounding the mobile manipulator and screenshots from
(b) to (h) show the eye-in-hand sensor at different NBVs-A
and the environment left unexplored after each scanning from
a NBV-A. This EXPLORE_A call took 15 iterations, i.e., 15
NBV-A were reached and the environment cleared at the end
is shown in (h.1). Compared to simulation, the EXPLORE_A
module in real experiment roughly takes 30% more time
to explore the same amount of space. With in the explored
region, the pick base pose was not reachable, therefore, a
path was planned using HAMP-BUA to reach NBV-B shown
in (i). Thereafter, the pick base pose was reached and the
object was grasped as shown in (j) and (k)-(m), respectively.
Screenshots from (n) to (o) show the mobile manipulator path
execution to reach NBV-B to explore the unknown region
on the other side of the door. From the reached NBV-B,
the EXPLORE_A module was invoked that took 8 iterations
to explore the local region as shown from (p) to (s). Note
that, post arm exploration, there was some unexplored region
left (s.1) but that was outside the local Voxelmap (not shown
here) and on the other hand the place base pose was reachable
with in the explored region. Therefore, a path was planned
and figures from (t) to (v) show the arm reconfiguration
step along the path. In (w) and (x), the mobile manipulator
reached to place base pose and the object was placed at
target location. Figure 16 shows the explored environment
after completing the task. This real experiment trial is also
shown in the video attached to this paper (Extension 2).
Figure 17 shows the final outcome of our second trial where
the environment was fully explored.

VIII. CONCLUSION

We presented a sampling-based mobile manipulator plan-
ner (HAMP-BUA) that plans for both the base and the arm in
a judicious manner and considers the base pose uncertainty
and the effects of this uncertainty on manipulator motions.
It uses localization aware sampling and connection strategies
to consider only those nodes and edges which contribute
toward better localization. This helps to reduce the planning
time significantly which is needed for mobile manipulator
where collision-checks are carried out in 3D. At path search

Fig. 16. [Real experiment trial 1]: less than 1% of the environment
remained unexplored (in cyan colour) as the system was able to complete
the pick-and-place task within the known region.

Fig. 17.

[Real experiment trial 2]: fully explored environment.

stage, our planner incorporates base pose uncertainty along
the edges (where arm remains static) and the effects of this
uncertainty are considered on arm reconfiguration step at
nodes (where base remains static). Moreover, HAMP-BUA
respects the collision probability threshold along the path
and uncertainty threshold at goal. First, we evaluated our
planner in known environment and show that it finds a safer
path as compared to other variants where uncertainty is not
considered at different levels, for example, not incorporating
base uncertainty on manipulator plans, not respecting col-
lision probability threshold along the edges. We also show
that variants of this planner that do not use our localization
aware sampling and connection strategies will take longer to
find the same quality of path.

Furthermore, we demonstrated our planner for a real world
application using an integrated and fully autonomous system
that carries out mobile pick-and-place tasks in unknown
static environments. A key aspect of our integrated system
is that the planner works in tandem with base and arm ex-
ploration modules (view planning) that explore the unknown

environment. Our system is demonstrated both in simulation
and on the actual SFU mobile manipulator. The total time
taken by the system (especially motion execution time) can
be further reduced to great extent if the issues mentioned in
Sections VII-A and VII-B can be resolved.

REFERENCES

Agha-mohammadi A, Chakravorty S and Amato N (2014)
FIRM: Sampling-based feedback motion planning under
motion uncertainty and imperfect measurements. The
International Journal of Robotics Research 33(2): 268—
304.

Bai H, Hsu D and Lee WS (2014) Integrated perception and
planning in the continuous space: A POMDP approach.
The International Journal of Robotics Research 33(9):
1288-1302.

Berenson D, Kuffner J and Choset H (2008) An optimization
approach to planning for mobile manipulation. In: Proc.
of the IEEE International Conference on Robotics and
Automation (ICRA). pp. 1187-1192.

Bohlin R and Kavraki L (2000) Path planning using lazy
prm. In: Proc.of the IEEE International Conference on
Robotics and Automation (ICRA). pp. 521-528.

Bouilly B, Simeon T and Alami R (1995) A numerical
technique for planning motion strategies of a mobile robot
in presence of uncertainty. In: Proc.of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA).
pp. 1327-1332.

Bry A and Roy N (2011) Rapidly-exploring random belief
trees for motion planning under uncertainty. In: Proc.of
the IEEE Int. Conf. on Robotics and Automation (ICRA).
pp. 723-730.

Chitta S, Jones EG, Ciocarlie M and Hsiao K (2012) Mobile
manipulation in unstructured environments. IEEE Robotics
and Automation Magazine 19(2): 58-71.

Ciocarlie M, Hsiao K, Jones EG, Chitta S, Rusu RB and
Sucan IA (2010) Towards reliable grasping and manipu-
lation in household environments. In: Intl. Symposium on
Experimental Robotics.

Collet A, Martinez M and Srinivasa SS (2011) The MOPED
framework: Object recognition and pose estimation for
manipulation. International Journal of Robotics Research
30(10): 1284-1306.

Dogar M and Srinivasa SS (2010) Push-grasping with dex-
terous hands: Mechanics and a method. In: Proc.of the
IEEFE International Conference on Intelligent Robots and
Systems (IROS). pp. 2123-2130.

Dornhege C and Kleiner A (2011) A frontier-void-based
approach for autonomous exploration in 3d. In: Proc.of
the IEEE International Symposium on Safety, Security, and
Rescue Robotics. pp. 351-356.

Dumitrescu I and Boland N (2002) Algorithms for the
weight constrained shortest path problem. International
Transactions in Operational Research 8(1): 15-29.

Eppner C, Hofer S, Jonschkowski R, Martin RM, Sieverling
A, Wall V and Brock O (2016) Lessons from the ama-

zon picking challenge: Four aspects of building robotic
systems. In: Robotics: Science and Systems (RSS).

Fraichard T and Mermond R (1998) Path planning with
uncertainty for car-like robots. In: Proc.of the IEEE
International Conference on Robotics and Automation
(ICRA). pp. 27-32.

Gochev K, Safonova A and Likhachev M (2012) Planning
with adaptive dimensionality for mobile manipulation. In:
Proc.of the IEEE International Conference on Robotics
and Automation (ICRA). pp. 2944-2951.

Hershberger J, Maxel M and Suri S (2007) Finding the k
shortest simple paths: A new algorithm and its implemen-
tation. ACM Transactions on Algorithms 3(4).

Hornung A, Phillips M, Jones EG, Bennewitz M, Likhachev
M and Chitta S (2012) Navigation in three-dimensional
cluttered environments for mobile manipulation. In:
Proc.of the IEEE International Conference on Robotics
and Automation (ICRA). pp. 423-429.

Hornung A, Wurm KM, Bennewitz M, Stachniss C and
Burgard W (2013) OctoMap: An efficient probabilistic 3D
mapping framework based on octrees. Autonomous Robots
34(3): 189-206.

Huang Y and Gupta K (2008) RRT-SLAM for motion
planning with motion and map uncertainty for robot ex-
ploration. In: Proc.of the IEEE International Conference
on Intelligent Robots and Systems (IROS). pp. 22-26.

Huang Y and Gupta K (2009) Collision-probability con-
strained PRM for a manipulator with base pose uncer-
tainty. In: Proc.of the IEEE International Conference on
Intelligent Robots and Systems (IROS). pp. 1426-1432.

Kaelbling L, Littman M and Cassandra A (1998) Planning
and acting in partially observable stochastic domains.
Artificial Intelligence 101: 99-134.

Karaman S and Frazzoli E (2011) Sampling-based algorithms
for optimal motion planning. International Journal of
Robotics Research (IJRR) 30(7): 846-894.

Kneip L, Tche F, Caprari G and Siegwart R (2009) Character-
ization of the compact hokuyo URG-04LX 2D laser range
scanner. In: Proc.of the IEEE International Conference on
Robotics and Automation (ICRA). pp. 1447-1454.

Kragic D and Christensen H (2003) Robust visual servoing.
International Journal of Robotics Research 22: 923-939.

Kurniawati H, Bandyopadhyay T and Patrikalakis N (2012)
Global motion planning under uncertain motion, sensing,
and environment map. Autonomous Robots 33(3): 255-
272.

Kurniawati H, Du Y, Hsu D and Lee WS (2009) Motion
planning under uncertainty for robotic tasks with long time
horizons. In: Proc. of the International Symposium on
Robotics Research.

Lambert A and Gruyer D (2003) Safe path planning in
an uncertain-configuration space. In: Proc.of the IEEE
International Conference on Robotics and Automation
(ICRA). Roma, Italy, pp. 4185-4190.

Lazanas A and Latombe JC (1995) Motion planning with
uncertainty: a landmark approach. Artificial Intelligence
76(1-2).

Leeper A, Hsiao K, Chu E and Salisbury JK (2010) Using
near-field stereo vision for robotic grasping in cluttered
environments. In: Intl. Symposium on Experimental
Robotics.

Lehner P, Sieverling A and Brock O (2015) Incremental,
sensor-based motion generation for mobile manipulators
in unknown, dynamic environments. In: Proc.of the IEEE
International Conference on Robotics and Automation
(ICRA).

Marder-Eppstein E, Berger E, Foote T, Gerkey BP and
Konolige K (2010) The office marathon: Robust navigation
in an indoor office environment. In: Proc.of the IEEE
International Conference on Robotics and Automation
(ICRA). pp. 300-307.

Melchior NA and Simmons R (2007) Particle RRT for path
planning with uncertainty. In: Proc.of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA).
Roma, Italy, pp. 1617-1624.

Missiuro P and Roy N (2006) Adapting probabilistic
roadmaps to handle uncertain maps. In: Proc.of the IEEE
Int. Conf. on Robotics and Automation (ICRA). Orlando,
USA, pp. 1261-1267.

Pilania V and Gupta K (2014) A hierarchical and adaptive
mobile manipulator planner. In: Proc. of the IEEE-
RAS International Conference on Humanoid Robots (Hu-
manoids). Madrid, Spain, pp. 45-51.

Pilania V and Gupta K (2015a) A hierarchical and adaptive
mobile manipulator planner with base pose uncertainty.
Autonomous Robots 39(1): 65-85.

Pilania V and Gupta K (2015b) A localization aware sam-
pling strategy for motion planning under uncertainty. In:
Proc.of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). pp. 1187-1192.

Pilania V and Gupta K (2017) Localization aware sampling
and connection strategies for incremental motion planning
under uncertainty. Autonomous Robots 41(1): 111-132.

Pineau J, Gordon G and Thrunn S (2003) Point-based
value iteration: An anytime algorithm for POMDPs. In:
International Joint Conferences on Artificial Intelligence.
pp. 1025-1032.

Prentice S and Roy N (2009) The belief roadmap: Efficient
planning in belief space by factoring the covariance. The
International Journal of Robotics Research 28(11-12):
1448-1465.

Scholz J, Chitta S, Marthi B and Likhachev M (2011)
Cart pushing with a mobile manipulation system: Towards
navigation with moveable objects. In: Proc.of the IEEE
International Conference on Robotics and Automation
(ICRA). Shanghai, China.

Shen S, Michael N and Kumar V (2012) Autonomous
indoor 3d exploration with a micro-aerial vehicle. In:
Proc.of the IEEE International Conference on Robotics
and Automation (ICRA). pp. 9-15.

Stachniss C, Grisetti G and Burgard W (2005) Information
gain-based exploration using rao-blackwellized particle
filters. 1In: Proc.of the Robotics: Science and Systems
(RSS). pp. 65-72.

Tan J and Xi N (2001) Unified model approach for planning
and control of mobile manipulators. In: Proc.of the IEEE
International Conference on Robotics and Automation
(ICRA). pp. 3145-3152.

Tanner HG and Kyriakopoulos KJ (2000) Nonholonomic
motion planning for mobile manipulators. In: Proc.of the
IEEE International Conference on Robotics and Automa-
tion (ICRA). pp. 1233-1238.

Torabi L (2011) Integrated view and path planning for a
fully autonomous mobile-manipulator system for 3D object
modeling. Ph.d. thesis, Simon Fraser University.

Torabi L and Gupta K (2012a) An autonomous 9-dof mobile-
manipulator system for in situ 3d object modeling. In:
Proc.of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). pp. 4540-4541.

Torabi L and Gupta K (2012b) An autonomous six-dof eye-
in-hand system for in-situ 3d object modeling. Interna-
tional Journal of Robotics Research (IJRR) 31(1): 82—-100.

van den Berg J, Abbeel P and Goldberg K (2011) LQG-MP:
Optimized path planning for robots with motion uncer-
tainty and imperfect state information. The International
Journal of Robotics Research 30(7): 895-913.

Vannoy J and Xiao J (2008) Real-time adaptive motion
planning (RAMP) of mobile manipulators in dynamic
environments with unforeseen changes. IEEE Transctions
on Robotics 24(5): 1199-1212.

Yamamoto Y and Yun X (1994) Coordinating locomotion
and manipulation of a mobile manipulator. IEEE Trans.
Autom. Control 39(6): 1326-1332.

Yamauchi B (1997) A frontier-based approach for au-
tonomous exploration. In: Proc.of the Computational
Intelligence in Robotics and Automation. pp. 146-151.

Yang Y and Brock O (2010) Elastic roadmaps - motion gen-
eration for autonomous mobile manipulation. Autonomous
Robor 28(1): 113-130.

Yu Y and Gupta K (2001) On eye-sensor based path planning
for robots with non-trivial geometry/kinematics. In: Proc.
of the IEEE International Conference on Robotics and
Automation (ICRA). pp. 265-270.

APPENDIX I
INDEX TO MULTIMEDIA EXTENSIONS

TABLE V
TABLE OF MULTIMEDIA EXTENSIONS

Extension Type Description

1 Video HAMP-BUA demonstration using autonomous
system for mobile pick-and-place task in un-
known environment (simulation)

2 Video HAMP-BUA demonstration using autonomous

system for mobile pick-and-place task in un-
known environment (real experiment on SFU
Mobile Manipulator)

	I Introduction
	II Related work
	II-A Mobile Manipulator planning under uncertainty
	II-B Mobile manipulator based autonomous systems in unknown environment

	III Background Information - HAMP Algorithm
	IV The HAMP-BUA Algorithm
	IV-A Problem statement
	IV-B General information
	IV-C Algorithm description
	IV-D Reconfiguration path
	IV-E Collision tests
	IV-F Collision probability

	V Simulation results for HAMP-BUA
	V-A World representation and collision checks
	V-B Parameters and thresholds values

	VI Integrated and autonomous system for pick-and-place tasks in unknown environments
	VI-A Objective
	VI-B System components
	VI-B.1 Why we use 3 different sensors ?

	VI-C System architecture description
	VI-D HAMP-BUA for NBV-B
	VI-E Sensor scans and world representations

	VII Results
	VII-A Simulations
	VII-B Real experiments

	VIII Conclusion
	Appendix I: Index to Multimedia Extensions

