
A Task-Oriented Approach for Retrieving an Object from a Pile

Vinay Pilania, Dale McConachie, Brent Griffin, Jason J. Corso, and Dmitry Berenson

Abstract— We present a framework for object retrieval tasks
in extremely cluttered environments. The core of the frame-
work, the Next Best Option (NBO) planner, plans for the (task
oriented) next best object to be removed from a pile in order
to facilitate the quick retrieval of the target object. The plan
of removal of objects from the pile is intended to a) reveal
more graspable area of the target, b) find out if an object is
underneath another adjacent object. The latter is captured by
constructing a tree based on the RGB and depth segmentation
of the current scene. While for the former, first either ICP
or a modified version of TPS-RPM, a non-rigid registration
algorithm, is used to estimate the occluded portion of the
target object. The estimated shape is then used to compute
the graspable area that will be revealed by the removal of each
object. We provide experimental results using real sensor data
that show our planner takes fewer actions to finish the task as
compared to a baseline planner.

I. INTRODUCTION

Many applications in domestic service robotics and in-
dustrial robotics would benefit from a method which allows
retrieving objects from a pile. For instance, imagine a do-
mestic service robot retrieving a specific toy from a bin of
other toys. However, this task is very difficult because 1)
the target object may be severely occluded by other objects
(or even not visible); and 2) the objects blocking access to
the target may be in a complex arrangement, where deciding
what to remove in what order is not trivial. The blocking
objects could also be occluding each other.

We seek to develop a framework that addresses tasks like
those above, which requires integrating perception, shape
estimation, task planning, and manipulation algorithms. Our
approach starts by segmenting an RGBD image of the pile
into regions which represent different objects. If the target
object is not visible we first determine the list of top objects
and among them the object with larger surface area is
selected for removal. If any part of the target is visible we
first estimate the location of the occluded parts of the object
as best as possible given the available information. We then
search over grasps for the target, finding the grasp that would
be valid if the target were unoccluded which has minimal
overlap with occluding obstacles. We then seek to remove
the obstacles that occlude this grasp.

To remove grasp-occluding obstacles we compute the
occlusion relationships between all objects relevant to the
task; i.e. which objects are on top of which other ones.
These occlusion relationships are then used to construct a tree
rooted at the target object with nodes at the other objects.

Electrical Engineering and Computer Science Department,
University of Michigan, Ann Arbor, Michigan, 48109, USA
vpilania, dmcconac, griffb@umich.edu;
jjcorso, berenson@eecs.umich.edu

(a) (b)

(c)

Fig. 1. Example of the NBO planner building a tree representing the
scene. (a) Considering two adjacent regions to determine which region is
on top. (b) Selecting the next best option to maximize the graspable area.
(c) Removing the selected object.

The tree specifies which object should be removed before
which other one. Our Next Best Option (NBO) planner then
selects the path which will reveal the most graspable area on
the target. We then execute the first action in this sequence.
However, we do not assume that execution will always
succeed, as the grasps performed cannot be guaranteed to be
reliable when we do not know occluded parts of the objects.
After each action is executed, we re-perceive the environment
and re-plan the sequence of actions.

The key contributions of our work are a way to infer
occluded portions of the target object and to plan a sequence
of actions based on the real-world visibility and graspability
constraints of the robot. This distinguishes our work from the
planning literature for domains like the classic Blocksworld
[1], where constraints on what actions can be done are
manually-specified and perception is not considered.

However, because the problem we consider is extremely
difficult—requiring near-human capabilities of perception,
reasoning, and manipulation in the general case—we restrict
our domain so that we are able to work with current algo-
rithms for perception and grasping. First, our tests consider
only solid-color bean-bag objects. These are chosen because
they make segmentation tractable and because there is no
risk of breaking them if we make a manipulation error.
Second, our approach to grasping considers only grasps that
are directly computed from the point cloud of the object. In
the future, we will use methods such as [2], which can be



trained to perform grasps more robustly. Nevertheless, we
believe that the integration of these methods along with our
approaches for reasoning about occlusions are a significant
step forward for robot systems.

We evaluated our method on scenarios consisting of
single-color bean bags in piles. Our experiments were per-
formed with real RGBD sensor data and a KUKA robot
arm. We found that our method outperforms a naive baseline
planner that picks objects from the top in terms of the number
of actions.

II. RELATED WORK

In this section, first, we review the related work on task
planning, perception, non-rigid registration techniques.

A. Task and Manipulation Planning

Task planning for piles of objects was most notable consid-
ered as the Blocksworld domain [1]. Researchers in Artificial
Intelligence used this domain as a test-bed for symbolic
planning algorithms, but the constraints on which blocks are
manipulable were manually defined and perception was not
considered. Our work computes these constraints automati-
cally.

Several methods for sequencing manipulation tasks in
cluttered environments have been developed [3], [4], [5], [6].
These methods considered geometric constraints in deciding
the sequence of objects to manipulate. However, the entire
scene is assumed to be known, which is not realistic for
manipulating objects in a pile, where perception constraints
are key.

B. Perception

A similar perception problem to ours exists in the domain
of bin-picking, where a robot must retrieve a specific part
from a pile of parts. Perception algorithms for bin-picking
[7], [8], [9] generally seek to register a CAD model of the
target object to the scene. However, we use a segmentation
approach in our work because our objects are more readily
identified by color. Regardless, such perception approaches
could be easily integrated into our framework if necessary
for a set of objects.

Perception can also be an active process. Recent work [10],
[11] has explored using interaction with the environment to
infer object boundaries and kinematic models. We do not
currently consider active perception as part of framework,
but we seek to integrate such methods in the future.

C. Non-rigid Registration

To estimate the shape of a partial-occluded object in a
pile, we use techniques from non-rigid registration. Iterative
Closest Point (ICP) [12] is a popular rigid registration
algorithm, however, it (and other variants) does not account
for deformation, as can occur with objects like bean bags. A
class of methods like TPS-RPM [13] use Gaussian mixture
models and a kernel function to deal with deformation.
[14] uses Delaunay triangulation and TPS-RPM to deal
with outlier rejection. In contrast to earlier approaches CPD

[15] is agnostic to the transformation model. Though these
approaches deal with noise and other factors, the perfor-
mance of these methods deteriorates for large occlusions.
We modified TPS-RPM to better handle occlusions in our
application by accounting for points that should not be visible
from the camera pose.

III. PROBLEM STATEMENT

We use ri to represent ith region (object) in the RGB and
depth based segmentation of the current scene. Let R = {ri}
denote the set of n regions. We assume that the geometrical
shape of target object is known and denoted by T . Let
bj = {rt, r1, ..., rk} denote the jth branch of a tree rooted at
the target region rt. Let Te = REGISTRATION(T, rt) denote
the estimation of target region shape using a registration
algorithm. If the target object is not occluded then Te is
basically same as rt.

Given R and T , the objective of our NBO algorithm is to
find a region ∗ri such that

∗ri = max
ri,bj

Overlap{∗BBox, bj} (1)

where ri is the first graspable region along the branch bj
from root node rt and

∗BBox = min
x,y,θ

Overlap{R ∩ Te, BBox(x, y, θ)} (2)

subject to V alidGrasp(BBox(x, y, θ), Te) (3)

In the above equation, BBox denotes a bounding box
of length l, width w and positioned at (x, y, θ) which is
constrained by Te. Routines Overlap computes the overlap
area between two regions, and ValidGrasp validate the
grasping of Te at a bounding box pose, assuming that there
are no obstacles. This validity check is used to define a set
of potential grasp locations; we then select a single grasp
from this set which has minimum overlap with other objects
in the scene. In this way we define an bounding box ∗BBox
which we must then make obstacle free. If this bounding box
is obstacle free, then we expect that we can grasp and retrieve
the target object, even if other portions of the target object
are still occluded. Our implementation of ValidGrasp is
discussed in Sec. IV-D.

IV. THE NBO ALGORITHM

In this section, we provide our Next Best Option algorithm
that takes the segmentation (see Section V) of current scene,
index tindex of target region if the target object is detected
and segmented out by the segmentation algorithm and the
template (geometrical information, for example, in term of
point cloud) of the target object as inputs and plans for the
best object (region) to be removed from the piles of stuff
(all the segmented regions). Our NBO is iteratively called
until the target object is searched, i.e., get current scene
segmentation, invoke NBO, remove the object and repeat
the cycle. This section describes the one NBO call.

First, we state the following routines:
REGIONWITHMAXAREA({ri}) takes a set of regions as
input and returns the region with maximum surface area

2



which is approximated by the number of points in the region.
The validity of a region to be graspable in the presence of
obstacles is carried out using VALIDGRASPOBST(R, tindex)
which takes all regions and the index tindex of
considered region as inputs. This algorithm estimates if
the given region R[tindex] can be grasped and removed
by the robot; it is described in more detail in Sec. IV-D.
B(r) computes the boundary points of a region r [16].
CLOSEBPOINTS({p}r, {p}ri , ADJREGIONDISTTH) takes two
sets of points corresponding to region r and region ri
as inputs and returns the points in these sets which
are with in the distance threshold of ADJREGIONDISTTH.
REGIONPOINTS({p}r, REGIONINSIDEDISTTH) takes some
points (not all, for example boundary points) of a region
r as input and returns all the nearest neighbours (within
REGIONINSIDEDISTTH) for them from the same region.
Finally, routine CENTROID({p}r) computes the centroid
of a region r (with points {p} in 3D) and returns the z
component of the centroid.

A. Algorithm Description

The NBO algorithm is described in Algorithm 1. First,
tindex is checked and if tindex= ∅, i.e., the target object
is not visible or not segmented out in the current scene, then
the selection of next best object to be removed is decided as
follows (lines 1-3): routine TOPADJACENTREGION, explained in
Algorithm 2, is used to compute the top regions {rtopi } and
the region with maximum surface area is reported as the best
object for removal (denoted by mRegion for manipulation
region). However, if the target object is segmented out and
graspable, the NBO simply reports it. This is done in lines
4-5.

If the target object is visible but not graspable then a
detailed procedure is carried out to search for the best
object. In order to plan intelligently, it is important for the
search mechanism to know where the occluded portion of the
target object is residing. A modified registration algorithm
(explained in Section IV-C) is used to estimate the occluded
portion that takes the known geometrical shape T of the tar-
get object to match with the reported target region R[tindex]
(line 7). A bounding box BBox that captures the grasping
affordance is used to find a valid grasp point in R[tindex]
such that it minimizes the overlap of BBox centered at a
valid grasp pose with Te and R (excluding target region rt).
Considering the grasp affordance and removing obstacles to
ensure the grasp is accessible allows us to focus on removing
only the obstacles that are necessary for grasping; i.e. we do
not need to expose the entire target object to grasp it. ∗BBox
(computed using Equation 2) is used to find the overlap area
for each region which is a deciding factor in the cost metric
(please see Equation 1).

After obtaining the occluded portion of the target region
and the overlap of each region with ∗BBox, the planning is
carried out using a tree structure that connects the layout of
different regions in term of adjacency and underneath, i.e.,
finding all the adjacent neighbours for a region which are
lying on the top of it. This is done from lines 9-17. A node

structure has three components in order: a region, overlap of
the region with ∗BBox, and a pointer to its parent node. A
tree rooted at the target region is constructed. Start node ns
is inserted into a search queue (line 9). At each iteration of
the while loop (line 10), a node n is popped out from search
queue and nodes with top and adjacent regions are added
into the tree if there are no cycles. Based on our cost metric
(see Equation 1), the first graspable region (object) along the
branch that has maximum overlap with ∗BBox is reported
as the next best object for removal. We now describe routine
TOPADJACENTREGION.

B. Computation of Top And Adjacent Regions

This routine (explained in Algorithm 2) takes all the
segmented regions R as input. For each region (excluding the
background and the region ri under consideration), boundary
points are computed and compared with the boundary points
of a region ri. Only those boundary points {{p}rc , {p}ric }
from both the regions are retained which are close enough
based on the distance threshold of ADJREGIONDISTTH (lines
2-3). Furthermore, all the points in region r which are lying
close to {p}rc (i.e., close to retained boundary points of r),
based on another distance threshold REGIONINSIDEDISTTH, are
selected. We do the similar filtering for region ri and {p}ric .
Based on this, we now have point sets {p}rins, {p}

ri
ins for

regions r and ri, respectively. From lines 6-7, we compute
the z component of the centroid of point sets {p}rins, {p}

ri
ins

and use it to decide (line 8) if region r is adjacent and on
the top of region ri.

C. Registration Method

The registration method that we use to estimate the
geometry of the target object is described in Algorithm 3.
Please note that in registration context, we use fixed and
movable terms for referring to two point sets T and r. Also,
we use boundary points for alignment instead of full movable
and fixed point sets (line 1). However, at the end, we do
transform full movable point set using computed transform
function. An overview of our registration method is as
follows: first, we determine which (rigid or non-rigid) point
set matching technique is more appropriate for the current
situation. This is because non-rigid registration algorithms do
not perform well with occlusion. For that we filter out the
boundary points of fixed point set and check if enough points
are available to pursue non-rigid registration alignment as we
are dealing with deformable objects. This is done in lines 2-
4. We use Iterative Closest Point (ICP) [12] augmented with
RANSAC [17] based outlier rejection for situations where
non-rigid approach is not a good option. However, if there are
enough filtered boundary points left then a modified version
of TPS-RPM is used for alignment (lines 7-13). Note that
the initialization of affine transformation d (defined in next
paragraph) in TPS-RPM is based on ICP (line 7).

First, we introduce some notations to clearly outline our
modification in the TPS-RPM algorithm. We omit the full
details of TPS-RPM and our notation follows that of Chui
and Rangarajan [13]. Let V and X denote movable and fixed

3



Algorithm 1: NBO Algorithm
Input: regions R = {ri}, tindex ∈ {1, ..., n} or ∅, T
Output: region ∗ri

1 if tindex = ∅ then
2 {rtopi } := ri ∈ R 3 TOPADJACENTREGION(R, ri) is ∅
3 mRegion = REGIONWITHMAXAREA({rtopi })
4 else if tindex 6= ∅ & VALIDGRASPOBST(R, tindex) then
5 mRegion = R[tindex]

6 else
7 Te := REGISTRATION(T,R[tindex])
8 compute ∗BBox as per Eq. 2 & 3
9 Q← ns := {R[tindex], 0, ∅}

10 while Q 6= ∅ do
11 n :=POP(Q)
12 {index} =TOPADJACENTREGION(R,n[ri])
13 for each index do
14 overlap = Overlap(∗BBox,R[index])
15 n′ := {R[index], overlap), n}
16 Q← Q ∪ {n′}

17 mRegion = compute ∗ri as per Eq. 1

18 return mRegion

point sets with N and K points, respectively. M denotes a
correspondence matrix of size NXK and mai denotes the
correspondence probability of ath point va in V with ith

point xi in X . Let f(va, d, w) denote the mapping function,
where d and w represent affine transformation and warping
coefficient matrices, respectively. Our modifications (lines 10
and 11, Algorithm 3) to the original method are as follows:

1) Compute Correspondence Matrix M: Let d1 and d2
denote the distance of transformed movable point f(va) to
the nearest point in fixed point set and occluding point set
(see input in the algorithm), respectively. d1 > d2 implies
that the transformed movable point should match to some
point (nearest one) in occluding point set. Therefore, we put
mai = 0 for all i from 1 to K. Otherwise, we use the same
approach for assigning mai as in TPS-RPM.

2) Compute New Fixed Point Set Y: In TPS-RPM, ya =∑K
i=1maixi for all a. However, in our case (only if d1 >

d2), ya = c−λ3n̂, where c is the nearest occluding point to
f(va) and n̂ is the normal vector at c.

D. Grasping

The key idea behind our grasping algorithm is edges; if the
target object has sufficiently strong edges within the gripper
bounding box, then we can grasp the object. To apply this
edge detection, we first reduce the target estimate to an image
in the X-Y plane, and then generate a edge detecting kernel
If,e that matches the dimensions of our gripper (w, l), at
the given local (x, y, θ). We can then measure the response
of the filter to the projected target estimate in order to
determine if the edges are sufficiently strong. In addition to
an edge detector, we also pad the area around the grippers

Algorithm 2: TOPADJACENTREGION()
Input: regions R = {ri}, region ri under consideration
Output: indices of top and adjacent regions for ri

1 for each r ∈ R do
2 get boundary points {p}r = B(r); {p}ri = B(ri)
3 {{p}rc , {p}ric } = CLOSEBPOINTS({p}r, {p}ri ,

ADJREGIONDISTTH)
4 {p}rins = REGIONPOINTS({p}rc , REGIONINSIDEDISTTH)
5 {p}riins = REGIONPOINTS({p}ric , REGIONINSIDEDISTTH)
6 zrcent = CENTROID({p}rins)
7 zricent = CENTROID({p}riins)
8 if zrcent > zricent then
9 indices← index of r in R

10 return indices

Algorithm 3: REGISTRATION()
Input: movable point set T , fixed point set r,

TPS-RPM variables (t0, λ1, λ2, annealRate),
λ3, occluding point set {R} − {r}

Output: aligned movable point set Te
1 get boundary points {p}T = B(T ); {p}r = B(r)
2 {p}rfiltered = remove points in {p}r close to directly

occluding regions using threshold ADJREGIONDISTTH
3 if size({p}rfiltered) < TPSMINPOINTSTH then
4 Te = ICP(T, r)

5 else
6 Initialize parameters t0, λ1, λ2, λ3, annealRate
7 Initialize parameters M,f(d,w)
8 Movable V := {p}T , Fixed X := {p}rfiltered
9 for i = 1 to NUMITERATIONS do

10 Compute correspondence matrix M
11 Compute new fixed point set Y
12 Update transformation parameters d,w

13 Te = f(V, d, w)

14 return Te

with negative values in order penalize locations where errors
in sensing and actuation can degrade the grasp quality. An
example of our filter and response at a given orientation are
shown in Fig. 3. If the response at a particular (x, y, θ) is
beyond a given threshold GRASPQUALITYTH then the grasp is
valid as shown in Alg. 4.

In order to account for obstacles in VALIDGRASPOBST

(Alg. 5), we create two additional images, Io which records
the presence or absence of other objects, and If,o which
penalizes the presence of obstacles within the grasp box. As
with VALIDGRASP we pad the grasp box to penalize obstacles
that are nearby to account for noise in the system, then
threshold on the response to determine if a specific grasp
is valid. Iterating over a discretized set of grasp poses as in
(2) and (3), we can estimate if a given region is graspable,
even with the presence of other objects around it.

4



Fig. 2. RGB2D Framework

Algorithm 4: VALIDGRASP()
Input: Target estimate Te, bounding box BBox(x, y, θ)
Output: true/false

1 Ie = REDUCETOIMAGE(Te)
2 If,e = GENERATEGRIPPERFILTER(x, y, θ)
3 response = dot(Ie, If,e)
4 return response ≥ GRASPQUALITYTH

Fig. 3. Grasping edge detection example. (a) Target estimate Te reduced
to a XY image. (b) The grasp filter If,e which looks for an edge on the
sides of the grasp box. (c) The final result, convolved across the input target
estimate. The stronger the response, the more robust the grasp pose.

V. RGB2D OBJECT SEGMENTATION

RGBD data is collected from an overhead Microsoft
Kinect and integrated into ROS using [18], [19]. Our segmen-
tation algorithm initializes using the efficient graph-based
RGB image segmentation method of [20], then proceeds to
our novel Depth-based refinement process (RGB2D). The
depth-refinement process separates objects that are initially
grouped based on spatial proximity and color but also exhibit
a detectable depth boundary (e.g., the two rightmost yellow
bean bags in Figure 2). Depth boundaries are detected using
a Laplacian of Gaussian edge detector on a band-pass filtered
depth image (i.e., the depth image is offset and scaled given
the bounds of the robot’s workspace). Finally, segments are
classified as foreground or background objects based on

Algorithm 5: VALIDGRASPOBST()
Input: Regions R, tindex ∈ {1, ..., n}
Output: true/false

1 Obst = ∅
2 for each r ∈ R \R[tindex] do
3 Obst = Obst ∪ r
4 Io = REDUCETOIMAGE(Obst)
5 for each (x, y, θ) do
6 If,o = GENERATEOBSTFILTER(x, y, θ)
7 response = dot(Io, If,o)
8 if response ≥ GRASPOBSTTH &

VALIDGRASP(R[tindex], (x, y, θ)) then
9 return true

10 return false

the difference between their mean RGB values (∈ R3) and
the RGB descriptions for objects of interest. The RGB2D
framework is depicted in Figure 2.

VI. EXPERIMENT SETUP AND RESULTS

To evaluate the performance of our planner, we test it
against a simple baseline planner, using identical perception
and manipulation systems. To compare the effectiveness of
these planners, we record the total number of actions taken
to move the target object (red bean bag) to a pre-specified
location and average these results across 5 trials. These
planners are tested on two example tasks (Fig. 4 and 5);
a 4-square example where minor changes in the experiment
setup are the primary difference in the performance of the
algorithms, and a more complicated hierarchical line example
where we can see the explicit benefit of our approach.

5



1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Fig. 4. Sequence of screenshots showing planning process for 4 square task. First column: view from the Kinect sensor. Second column: segmentation
and target estimation (in yellow) (Alg. 3). Third column: best bounding box to be uncovered (in teal). Fourth column: points (in green) being considered
by TOPADJACENTREGION (Alg. 2). Fifth column: final region (in blue) selected for removal

Algorithm 6: Baseline Algorithm
Input: regions R = {ri}, tindex ∈ {1, ..., n} or ∅, T
Output: region ∗ri

1 if tindex 6= ∅ & VALIDGRASPOBST(R, tindex) then
2 mRegion = R[tindex]

3 else
4 {rtopi } := ri ∈ R 3 TOPADJACENTREGION(R, ri) is ∅
5 mRegion = REGIONWITHMAXAREA({rtopi })
6 return mRegion

A. Baseline Planner

For our baseline algorithm, we use a simple planner
(Alg. 6) which removes the target region if it is visible and
graspable, otherwise it uses the routine TOPADJACENTREGION

to compute the top regions and among them the region with
the most area is chosen for removal.

B. Results

The first example task (Fig. 4) starts with the red target
bean bag occluded, and requires at least 3 other bean bags
to be removed before there is the possibility of grasping the
target. Minor deviations in the starting position of the bags
could lead to a 4th bag needing to be removed before the

TABLE I
PARAMETER TABLE

ADJREGIONDISTTH 0.015
REGIONINSIDEDISTTH 0.02
TPSMINPOINTSTH 15
t0 0.001
λ1 12
λ2 0.01
λ3 0.0098
annealRate 0.98
GRASPQUALITYTH 0.8
GRASPOBSTTH 0.75

task could be completed. Because both planners need at least
3 bags to be removed before the target can be grasped, there
is very little difference in their performance.

The second example (Fig. 5) shows a very different result,
where the baseline planner typically has to remove all the
other bean bags before the target is revealed enough to be
grasped. In contrast, the NBO planner is able to select a
single branch to be removed rather than alternating between
them, significantly reducing the number of actions needed.

VII. CONCLUSION

This paper presented a framework for object retrieval tasks
in piles. We used RGBD segmentation to find objects in the

6



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

Fig. 5. Sequence of screenshots showing planning process for hierarchical line task. First column: segmentation and target estimation (in yellow) (Alg. 3).
Second column: best bounding box to be uncovered (in teal). Third column: points (in green) being considered by TOPADJACENTREGION (Alg. 2). Fourth
column: final region (in blue) selected for removal

TABLE II
AVERAGE ACTIONS TAKEN FOR EACH EXPERIMENT, ACROSS 5 TRIALS

PER ALGORITHM

Baseline
Planner

NBO
Planner

Four Square 4.8 4.4
Hierarchical Line 5.0 2.8

scene and computed occlusion relationships among obstacles
and between obstacles and the target. Our NBO planner
was used to find a sequence of removal actions to make
a grasp on the target accessible. Our results on a KUKA
robot arm showed that our method is more efficient than
a naive baseline. In future work we seek to improve the
perception and grasping algorithms, as well as to explore
active perception methods for piles.

REFERENCES

[1] J. Slaney and S. Thibaux, “Blocks world revisited,” Artificial Intelli-
gence, vol. 125, no. 1, pp. 119 – 153, 2001.

[2] M. Gualtieri, A. ten Pas, K. Saenko, and R. Platt, “High precision
grasp pose detection in dense clutter,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct 2016.

[3] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipula-
tion planning among movable obstacles,” in Robotics and Automation,
2007 IEEE International Conference on, 2007, pp. 3327–3332.

[4] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on, 2011, pp. 1470–1477.

[5] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” The International Journal
of Robotics Research, vol. 28, no. 1, pp. 104–126, 2009.

[6] A. Krontiris and K. E. Bekris, “Dealing with difficult instances of
object rearrangement.” in Robotics: Science and Systems, 2015.

[7] K. Ikeuchi, “Generating an interpretation tree from a cad model for
3d-object recognition in bin-picking tasks,” International Journal of
Computer Vision, vol. 1, no. 2, pp. 145–165, Jun 1987.

[8] M. Nieuwenhuisen, D. Droeschel, D. Holz, J. Stckler, A. Berner, J. Li,
R. Klein, and S. Behnke, “Mobile bin picking with an anthropo-
morphic service robot,” in 2013 IEEE International Conference on
Robotics and Automation, May 2013, pp. 2327–2334.

[9] M.-Y. Liu, O. Tuzel, A. Veeraraghavan, Y. Taguchi, T. K. Marks, and
R. Chellappa, “Fast object localization and pose estimation in heavy
clutter for robotic bin picking,” The International Journal of Robotics
Research, vol. 31, no. 8, pp. 951–973, 2012.

[10] H. van Hoof, O. Kroemer, and J. Peters, “Probabilistic segmentation
and targeted exploration of objects in cluttered environments,” IEEE
Transactions on Robotics, vol. 30, no. 5, pp. 1198–1209, Oct 2014.

[11] D. Katz and O. Brock, “Manipulating articulated objects with interac-
tive perception,” in Robotics and Automation, 2008. ICRA 2008. IEEE
International Conference on, 2008, pp. 272–277.

[12] P. J. Besl, N. D. McKay, et al., “A method for registration of
3-d shapes,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 14, no. 2, pp. 239–256, 1992.

7



[13] H. Chui and A. Rangarajan, “A new point matching algorithm for
non-rigid registration,” Computer Vision and Image Understanding,
vol. 89, no. 2-3, pp. 114–141, Feb 2003.

[14] D. Pizarro and A. Bartoli, “Feature-based deformable surface detection
with self-occlusion reasoning,” International Journal of Computer
Vision, vol. 97, no. 1, pp. 54–70, March 2012.

[15] A. Myronenko and X. Song, “Point set registration: Coherent point
drift,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 32, no. 12, pp. 2262–2275, December 2010.

[16] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in
Robotics and automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 1–4.

[17] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395,
June 1981.

[18] T. Wiedemeyer, “IAI Kinect2,” https://github.com/code-iai/iai kinect2,
Institute for Artificial Intelligence, University Bremen, 2014 – 2015,
accessed June 12, 2015.

[19] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),”
in 2011 IEEE International Conference on Robotics and Automation,
May 2011, pp. 1–4.

[20] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based im-
age segmentation,” International Journal of Computer Vision, vol. 59,
no. 2, pp. 167–181, Sep 2004.

8


